Pseudo-Monotone Operator Theory for Unsteady Problems with Variable Exponents - Alex Kaltenbach

Pseudo-Monotone Operator Theory for Unsteady Problems with Variable Exponents

(Autor)

Buch | Softcover
XIII, 358 Seiten
2023 | 1st ed. 2023
Springer International Publishing (Verlag)
978-3-031-29669-7 (ISBN)
64,19 inkl. MwSt
This book provides a comprehensive analysis of the existence of weak solutions of unsteady problems with variable exponents. The central motivation is the weak solvability of the unsteady p(.,.)-Navier-Stokes equations describing the motion of an incompressible electro-rheological fluid. Due to the variable dependence of the power-law index p(.,.) in this system, the classical weak existence analysis based on the pseudo-monotone operator theory in the framework of Bochner-Lebesgue spaces is not applicable. As a substitute for Bochner-Lebesgue spaces, variable Bochner-Lebesgue spaces are introduced and analyzed. In the mathematical framework of this substitute, the theory of pseudo-monotone operators is extended to unsteady problems with variable exponents, leading to the weak solvability of the unsteady p(.,.)-Navier-Stokes equations under general assumptions.

Aimed primarily at graduate readers, the book develops the material step-by-step, starting with the basics of PDE theory andnon-linear functional analysis. The concise introductions at the beginning of each chapter, together with illustrative examples, graphics, detailed derivations of all results and a short summary of the functional analytic prerequisites, will ease newcomers into the subject.

- 1. Introduction. - 2. Preliminaries. - Part I Main Part. - 3. Variable Bochner-Lebesgue Spaces. - 4. Solenoidal Variable Bochner-Lebesgue Spaces. - 5. Existence Theory for Lipschitz Domains. - Part II Extensions. - 6. Pressure Reconstruction. - 7. Existence Theory for Irregular Domains. - 8. Existence Theory for p- < 2. - 9. Appendix.

"This book is essentially based on the author's doctoral thesis ... . The book also contains an appendix and references. ... The book could be used by graduate students and researchers working on such problems." (Gheorghe Morosanu, zbMATH 1526.35002, 2024)

Erscheinungsdatum
Reihe/Serie Lecture Notes in Mathematics
Zusatzinfo XIII, 358 p. 11 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Gewicht 565 g
Themenwelt Mathematik / Informatik Mathematik Analysis
Technik Maschinenbau
Schlagworte Electrorheological Fluids • Existence of Weak Solutions • Pseudo-monotone Operator Theory • Variable Exponent Bochner-Lebesgue Spaces • variable exponent Lebesgue spaces • Variable Exponent Sobolev Spaces
ISBN-10 3-031-29669-9 / 3031296699
ISBN-13 978-3-031-29669-7 / 9783031296697
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich