Stability Analysis of Neural Networks - Grienggrai Rajchakit, Praveen Agarwal, Sriraman Ramalingam

Stability Analysis of Neural Networks (eBook)

eBook Download: PDF
2021 | 1st ed. 2021
XXVI, 404 Seiten
Springer Singapore (Verlag)
978-981-16-6534-9 (ISBN)
Systemvoraussetzungen
128,39 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book discusses recent research on the stability of various neural networks with constrained signals. It investigates stability problems for delayed dynamical systems where the main purpose of the research is to reduce the conservativeness of the stability criteria. The book mainly focuses on the qualitative stability analysis of continuous-time as well as discrete-time neural networks with delays by presenting the theoretical development and real-life applications in these research areas. The discussed stability concept is in the sense of Lyapunov, and, naturally, the proof method is based on the Lyapunov stability theory. The present book will serve as a guide to enable the reader in pursuing the study of further topics in greater depth and is a valuable reference for young researcher and scientists. 



GRIENGGRAI RAJCHAKIT is Associate Professor at the Department of Mathematics, Faculty of Science, Maejo University, Chiangmai, Thailand. He received his Ph.D. in Applied Mathematics from the King Mongkut's University of Technology Thonburi, Bangkok, Thailand, on the topic of stability and control of neural networks. He received the Thailand Frontier Author Award by Thomson Reuters Web of Science (2016) and the TRF-OHEC-Scopus Researcher Award by The Thailand Research Fund, Office of the Higher Education Commission (OHEC) and Scopus (2016), respectively. His research interests are complex-valued neural networks, complex dynamical networks, control theory, stability analysis, sampled data control, multi-agent systems, and T-S fuzzy theory, and cryptography. He is a reviewer for various reputed journals and has authored and co-authored more than 111 research articles in various reputed journals.

PRAVEEN AGARWAL is a Professor at the Department of Mathematics, Anand International College of Engineering, Jaipur, India. In 2006, he earned his Ph.D. in Mathematics from the Malviya National Institute of Technology, Jaipur, India. He has published over 250 articles related to special functions, fractional calculus, fixed point theory, mathematical modeling, and mathematical physics in several leading mathematics journals. His latest research has focused on partial differential equations, fixed point theory, neural networks, and fractional differential equations. On the editorial boards of several reputed journals, he has been involved in a number of conferences. Recently, he received the Most Outstanding Researcher 2018 Award for his contribution to mathematics by the Union Minister of Human Resource Development of India. He has received numerous international and national research grants. 

SRIRAMAN RAMALINGAM worked as Assistant Professor at the Department of Science and Humanities, Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Chennai, Tamil Nadu, India, from 2019 to 2020. He earned his Ph.D. from Thiruvalluvar University, Vellore, Tamil Nadu, India, in 2020. He His research interests are in dynamical systems theory include neural networks and time delay systems. He has authored and co-authored more than 20 research articles in various reputed journals and serves as a reviewer for various journals of repute.

 



This book discusses recent research on the stability of various neural networks with constrained signals. It investigates stability problems for delayed dynamical systems where the main purpose of the research is to reduce the conservativeness of the stability criteria. The book mainly focuses on the qualitative stability analysis of continuous-time as well as discrete-time neural networks with delays by presenting the theoretical development and real-life applications in these research areas. The discussed stability concept is in the sense of Lyapunov, and, naturally, the proof method is based on the Lyapunov stability theory. The present book will serve as a guide to enable the reader in pursuing the study of further topics in greater depth and is a valuable reference for young researcher and scientists. 
Erscheint lt. Verlag 5.12.2021
Zusatzinfo XXVI, 404 p. 56 illus., 54 illus. in color.
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Angewandte Mathematik
Technik Bauwesen
Technik Maschinenbau
Schlagworte asymptotic stability • Bidirectional Associative Memory • Cellular Neural Network • Cohen-Grossberg neural network • Exponential stability • gene regulatory network • Hopfield Neural Network • Lyapunov-Krasovskii Functional • Markovian jumping • Neural networks • Robust Stability • stability
ISBN-10 981-16-6534-6 / 9811665346
ISBN-13 978-981-16-6534-9 / 9789811665349
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 7,4 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Trigonometrie, Analytische Geometrie, Algebra, Wahrscheinlichkeit

von Walter Strampp

eBook Download (2024)
De Gruyter (Verlag)
94,95
Angewandte Analysis im Bachelorstudium

von Michael Knorrenschild

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
34,99

von Siegfried Völkel; Horst Bach; Jürgen Schäfer …

eBook Download (2024)
Carl Hanser Verlag GmbH & Co. KG
34,99