A Tour of Data Science - Nailong Zhang

A Tour of Data Science

Learn R and Python in Parallel

(Autor)

Buch | Softcover
216 Seiten
2020
Chapman & Hall/CRC (Verlag)
978-0-367-89586-0 (ISBN)
59,95 inkl. MwSt
This book covers the fundamentals of data science, including programming, statistics, optimization, and machine learning in a single and short book. It does not cover everything, but instead, teaches the key concepts and topics. It also covers two of the most popular programming languages used in Data Science, R and Python, in one source.
A Tour of Data Science: Learn R and Python in Parallel covers the fundamentals of data science, including programming, statistics, optimization, and machine learning in a single short book. It does not cover everything, but rather, teaches the key concepts and topics in Data Science. It also covers two of the most popular programming languages used in Data Science, R and Python, in one source.

Key features:



Allows you to learn R and Python in parallel
Cover statistics, programming, optimization and predictive modelling, and the popular data manipulation tools – data.table and pandas
Provides a concise and accessible presentation
Includes machine learning algorithms implemented from scratch, linear regression, lasso, ridge, logistic regression, gradient boosting trees, etc.

Appealing to data scientists, statisticians, quantitative analysts, and others who want to learn programming with R and Python from a data science perspective.

Nailong Zhang is lead Data Scientist at Mass Mutual Life Insurance Company.

Assumptions about the reader’s background
Book overview

Introduction to R/Python Programming
Calculator

Variable and Type
Functions
Control flows
Some built-in data structures
Revisit of variables
Object-oriented programming (OOP) in R/Python
Miscellaneous

More on R/Python Programming
Work with R/Python scripts
Debugging in R/Python
Benchmarking
Vectorization
Embarrassingly parallelism in R/Python
Evaluation strategy
Speed up with C/C++ in R/Python
A first impression of functional programming Miscellaneous

data.table and pandas
SQL
Get started with data.table and pandas
Indexing & selecting data
Add/Remove/Update
Group by
Join

Random Variables, Distributions & Linear Regression
A refresher on distributions
Inversion sampling & rejection sampling
Joint distribution & copula
Fit a distribution
Confidence interval
Hypothesis testing
Basics of linear regression
Ridge regression

Optimization in Practice
Convexity
Gradient descent
Root-finding
General purpose minimization tools in R/Python
Linear programming
Miscellaneous

Machine Learning - A gentle introduction
Supervised learning
Gradient boosting machine
Unsupervised learning
Reinforcement learning
Deep Q-Networks
Computational differentiation
Miscellaneous

Erscheinungsdatum
Reihe/Serie Chapman & Hall/CRC Data Science Series
Zusatzinfo 4 Tables, black and white; 25 Illustrations, black and white
Sprache englisch
Maße 178 x 254 mm
Gewicht 408 g
Themenwelt Mathematik / Informatik Informatik Datenbanken
Mathematik / Informatik Informatik Programmiersprachen / -werkzeuge
Mathematik / Informatik Informatik Software Entwicklung
Mathematik / Informatik Informatik Theorie / Studium
Technik Elektrotechnik / Energietechnik
ISBN-10 0-367-89586-2 / 0367895862
ISBN-13 978-0-367-89586-0 / 9780367895860
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Der Grundkurs für Ausbildung und Praxis

von Ralf Adams

Buch (2023)
Carl Hanser (Verlag)
29,99