3D Bioprinting in Medicine (eBook)

Technologies, Bioinks, and Applications

Murat Guvendiren (Herausgeber)

eBook Download: PDF
2019 | 1st ed. 2019
XIII, 209 Seiten
Springer International Publishing (Verlag)
978-3-030-23906-0 (ISBN)

Lese- und Medienproben

3D Bioprinting in Medicine -
Systemvoraussetzungen
139,09 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book provides current and emerging developments in bioprinting with respect to bioprinting technologies, bioinks, applications, and regulatory pathways. Topics covered include 3D bioprinting technologies, materials such as bioinks and bioink design, applications of bioprinting complex tissues, tissue and disease models, vasculature, and musculoskeletal tissue. The final chapter is devoted to clinical applications of bioprinting, including the safety, ethical, and regulatory aspects. This book serves as a go-to reference on bioprinting and is ideal for students, researchers and professionals, including those in academia, government, the medical industry, and healthcare.




Dr. Murat Guvendiren is the principal investigator of the Instructive Biomaterials and Additive Manufacturing Laboratory (IBAM-Lab) and an Assistant Professor in the Chemical and Materials Engineering Department at the New Jersey Institute of Technology (NJIT). He earned his B.S. and M.S.degrees in Metallurgical and Materials Engineering from the Middle East Technical University in Ankara,Turkey. He earned his Ph.D. degree from the Department of Materials Science and Engineering at Northwestern University. He did a postdoctoral training at the University of Pennsylvania. Before joining to NJIT, he was a Research Assistant Professor at the New Jersey Center for Biomaterials at Rutgers University. His research focuses on the development of novel bioink formulations and bioprinting of in vitro tissue/disease models.

Preface 5
Acknowledgments 6
Contents 7
Chapter 1: 3D Bioprinting Technologies 11
1.1 Introduction 11
1.2 Contributing Technologies and a Historical Perspective on 3D Printing, Tissue Engineering, and Bioprinting 13
1.3 What Defines Bioprinting Among Related Technologies? 19
1.4 Bioprinting Workflow 21
1.5 Bioprinting Technologies 26
1.5.1 Extrusion-Based Bioprinting 27
1.5.2 Droplet-Based Bioprinting 31
1.5.3 Energy-Based Bioprinting 35
1.6 Printing with Bioinks: Strengths and Challenges Within Bioprinting Technologies 40
1.6.1 Considerations in Extrusion-Based Bioink Deposition 41
1.6.2 Considerations in Droplet-Based Bioink Deposition 44
1.6.3 Considerations in Energy-Based Bioink Deposition 47
1.7 Expanding the Capabilities of Bioprinting Through Innovation and Closely Related Technologies 49
1.7.1 Multimodal and Multimaterial Printing 50
1.7.2 Embedded Bioprinting and Addressing Challenges Inherent to Layer-by-Layer Printing 51
1.7.3 Modifying the Printing Process and Hardware to Extending Bioprinting Capabilities and Materials 55
1.7.4 Technologies at the Boundary Between Bioprinting and Biofabrication 56
1.8 Looking Toward the Future of Bioprinting 59
References 61
Chapter 2: Materials as Bioinks and Bioink Design 77
2.1 Introduction 78
2.2 Bioink Design Principles 80
2.2.1 Printability 80
2.2.2 Mechanical Properties 81
2.2.3 Degradation 82
2.2.4 Biochemical Functionality 83
2.2.5 Cell Viability 84
2.2.6 Biocompatibility 84
2.3 Bioink Formulations 85
2.3.1 Cell-Based Bioinks and Scaffold-Free Printing 85
2.3.2 Cell-Encapsulating Materials and Scaffold-Based Printing 86
2.3.2.1 Natural Polymers 88
2.3.2.1.1 Agarose 89
2.3.2.1.2 Alginate 89
2.3.2.1.3 Collagen 90
2.3.2.1.4 Fibrin 91
2.3.2.1.5 Hyaluronic Acid (HA) 91
2.3.2.1.6 Cellulose (and Derivatives) 92
2.3.2.1.7 Silk 92
2.3.2.1.8 Decellularized Extracellular Matrix (dECM) 92
2.3.2.2 Synthetic Polymers 93
2.3.2.2.1 Pluronic® 94
2.3.2.2.2 Poly(Ethylene Glycol) (PEG) 94
2.3.2.3 Multi-Material Bioinks 95
2.3.2.3.1 Interpenetrating Polymer Networks (IPNs) 97
2.3.2.3.2 Nanocomposite Bioinks 98
2.4 Future Perspectives 99
2.4.1 Supramolecular Materials 99
2.4.2 Microgels 101
2.5 Conclusion 101
References 102
Suggested Reading 110
Chapter 3: Potential Clinical Applications of Three-Dimensional Bioprinting 111
3.1 Introduction 112
3.2 Bone 113
3.3 Cartilage 117
3.4 Skin 121
3.5 Neural Tissues 125
3.6 Blood Vessels 126
3.7 Muscle 126
3.8 Cardiovascular Tissue 127
3.9 Other Tissues 127
3.10 Conclusions 128
References 129
Chapter 4: Bioprinting Vasculature 136
4.1 Introduction 137
4.2 In Vitro Tissue-Engineered Vascularized Construct 139
4.2.1 Choice of Biomaterials 139
4.2.1.1 Natural Polymers 139
4.2.1.2 Synthetic Polymers 140
4.2.1.3 dECM: A Biomimetic Approach 140
4.2.2 Strategies for Fabricating Tissue-Engineered Vascularized Constructs 141
4.3 3D Bioprinting of Vascularized Constructs 143
4.3.1 Inkjet-Based Bioprinting 143
4.3.2 Laser-Assisted Bioprinting 144
4.3.3 Extrusion-Based Bioprinting 145
4.4 Application of Bioprinted Vascularized Tissue Constructs 147
4.4.1 Tissue Regeneration 148
4.4.2 Drug Discovery and Toxicological Screening 150
4.5 Conclusion and Future Perspective 152
References 153
Chapter 5: 3D Bioprinting in Clinical Cardiovascular Medicine 158
5.1 Introduction 159
5.2 3D Bioprinted Surgical Models of Cardiac Disease 160
5.3 3D Bioprinted Cardiac Patches 161
5.4 3D Bioprinting in Computational and Theoretical Modeling 163
5.5 3D Bioprinted Heart Valves 164
5.6 3D Bioprinted Stents 166
5.7 Summary and Concluding Remarks 166
References 167
Chapter 6: Understanding Cancer Cell Behavior Through 3D Printed Bone Microenvironments 172
6.1 Introduction 173
6.2 An Overview of Current Cancer Treatments 173
6.2.1 Systemic Cancer Drug Delivery 175
6.2.2 Targeted Drug Delivery 175
6.2.3 Lipid-Based Drug Delivery Systems 177
6.2.4 Nanotechnology-Based Drug Delivery 177
6.2.4.1 Nanocontainers and Nanocarriers 179
6.2.4.2 Metal Nanoparticles 180
6.2.4.2.1 Cancer Hyperthermal Therapy 181
6.2.4.2.2 Cancer Magnetic Therapy 182
6.3 Cancer Metastasis 182
6.3.1 Bone as a Microenvironment for Cancer Metastasis 182
6.4 Current Treatments for Bone Cancer Metastasis 184
6.5 In Vitro and In Vivo Models of the Cancer Microenvironment 184
6.5.1 Two-Dimensional (2D) Monolayer vs. Three-Dimensional (3D) Culture Systems 184
6.5.2 Cancer Spheroids 185
6.6 3D Bioprinting 186
6.6.1 3D Bioprinting Devices 186
6.6.1.1 Inkjet-Based Bioprinting 187
6.6.1.2 Laser-Based Bioprinting 188
6.6.1.3 Extrusion-Based Printers 188
6.6.1.4 Bioplotting 189
6.6.1.5 Fused-Deposition Modeling (FDM) 189
6.6.1.6 Stereolithography (SL) 190
6.7 3D Printed Bone Cancer Microenvironment 190
6.7.1 3D Printed Cancer Model Examples 191
6.7.1.1 Preserving Cancer Cell Behavior 191
6.7.1.2 Fabricating Bone Cancer Cell Models 192
6.8 Current State-of-the-Art and Future Prospects 192
References 193
Chapter 7: Three-Dimensional Bioprinting: Safety, Ethical, and Regulatory Considerations 199
7.1 Introduction 200
7.2 Ethical Considerations 200
7.2.1 Ownership of Prototypes 200
7.2.2 Cells 201
7.2.3 Justice 202
7.2.4 Degradation of Social, Moral, and Religious Beliefs and Values 203
7.3 Safety 204
7.3.1 Safety: Ex Vivo Manipulation of Human Cells 204
7.3.1.1 Malignant Transformation 204
7.3.1.2 Culture Conditions 204
7.3.1.3 Culture Media 205
7.3.1.4 Sterility 206
7.3.2 Safety: Use of Growth Factors 206
7.4 Regulation 207
7.5 Conclusions 208
References 208
Correction to: 3D Bioprinting Technologies 212
Correction to: Chapter 1 in: M. Guvendiren (ed.), 3D Bioprinting in Medicine, https://doi.org/10.1007/978-3-030-23906-0_1 212
Index 213

Erscheint lt. Verlag 2.8.2019
Zusatzinfo XIII, 209 p. 38 illus. in color.
Sprache englisch
Themenwelt Medizin / Pharmazie Allgemeines / Lexika
Naturwissenschaften Biologie Genetik / Molekularbiologie
Technik Bauwesen
Technik Maschinenbau
Schlagworte 3D Bioprinting Technologies • Bioprinting Complex Tissues • Bioprinting Complex Tissues applications • Bioprinting Safety Ethical Regulatory • Bioprinting Tissue Disease Models • Bioprinting Vasculature • Bioprinting Vasculature applications • Biorpirinting Musculoskeletal tissue • Biorpirinting Musculoskeletal tissue applications • Clinical Applications Bioprinting • Materials Bioinks Design
ISBN-10 3-030-23906-3 / 3030239063
ISBN-13 978-3-030-23906-0 / 9783030239060
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 7,1 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
DNA, RNA, Mutationen, Klonierung und Co. verstehen

von Tara Rodden Robinson; Lisa J. Spock

eBook Download (2021)
Wiley-VCH GmbH (Verlag)
17,99