Hierarchical Feature Selection for Knowledge Discovery (eBook)

Application of Data Mining to the Biology of Ageing

(Autor)

eBook Download: PDF
2018 | 1st ed. 2019
XIV, 120 Seiten
Springer International Publishing (Verlag)
978-3-319-97919-9 (ISBN)

Lese- und Medienproben

Hierarchical Feature Selection for Knowledge Discovery - Cen Wan
Systemvoraussetzungen
96,29 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book is the first work that systematically describes the procedure of data mining and knowledge discovery on Bioinformatics databases by using the state-of-the-art hierarchical feature selection algorithms. The novelties of this book are three-fold. To begin with, this book discusses the hierarchical feature selection in depth, which is generally a novel research area in Data Mining/Machine Learning. Seven different state-of-the-art hierarchical feature selection algorithms are discussed and evaluated by working with four types of interpretable classification algorithms (i.e. three types of Bayesian network classification algorithms and the k-nearest neighbours classification algorithm). Moreover, this book discusses the application of those hierarchical feature selection algorithms on the well-known Gene Ontology database, where the entries (terms) are hierarchically structured. Gene Ontology database that unifies the representations of gene and gene products annotation provides the resource for mining valuable knowledge about certain biological research topics, such as the Biology of Ageing. Furthermore, this book discusses the mined biological patterns by the hierarchical feature selection algorithms relevant to the ageing-associated genes. Those patterns reveal the potential ageing-associated factors that inspire future research directions for the Biology of Ageing research.

Dr. Cen Wan is a Postdoctoral Research Associate in the Department of Computer Science at University College London, and in the Biomedical Data Science Laboratory at The Francis Crick Institute, London, UK.

Dr. Cen Wan is a Postdoctoral Research Associate in the Department of Computer Science at University College London, and in the Biomedical Data Science Laboratory at The Francis Crick Institute, London, UK.

Introduction

Data Mining Tasks and Paradigms

Feature Selection Paradigms

Background on Biology of Ageing and Bioinformatics

Lazy Hierarchical Feature Selection

Eager Hierarchical Feature Selection

Comparison of Lazy and Eager Hierarchical Feature Selection Methods and Biological Interpretation on Frequently Selected Gene Ontology Terms Relevant to the Biology of Ageing

Conclusions and Research Directions

Erscheint lt. Verlag 29.11.2018
Reihe/Serie Advanced Information and Knowledge Processing
Advanced Information and Knowledge Processing
Zusatzinfo XIV, 120 p. 52 illus., 23 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Technik
Schlagworte Bioinformatics • Biology of Ageing • Data Mining • Gene Ontology • Hierarchical Feature Selection • Knowledge Discovery
ISBN-10 3-319-97919-1 / 3319979191
ISBN-13 978-3-319-97919-9 / 9783319979199
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 7,0 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

von Thomas R. Köhler; Julia Finkeissen

eBook Download (2024)
Campus Verlag
38,99
Wie du KI richtig nutzt - schreiben, recherchieren, Bilder erstellen, …

von Rainer Hattenhauer

eBook Download (2023)
Rheinwerk Computing (Verlag)
17,43