Robust Statistics (eBook)

Theory and Methods (with R)
eBook Download: PDF
2018 | 2. Auflage
464 Seiten
John Wiley & Sons (Verlag)
978-1-119-21467-0 (ISBN)

Lese- und Medienproben

Robust Statistics - Ricardo Maronna, R. Douglas Martin, Victor Yohai, Matias Salibian-Barrera
Systemvoraussetzungen
80,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
A new edition of this popular text on robust statistics, thoroughly updated to include new and improved methods and focus on implementation of methodology using the increasingly popular open-source software R.

Classical statistics fail to cope well with outliers associated with deviations from standard distributions. Robust statistical methods take into account these deviations when estimating the parameters of parametric models, thus increasing the reliability of fitted models and associated inference. This new, second edition of Robust Statistics: Theory and Methods (with R) presents a broad coverage of the theory of robust statistics that is integrated with computing methods and applications. Updated to include important new research results of the last decade and focus on the use of the popular software package R, it features in-depth coverage of the key methodology, including regression, multivariate analysis, and time series modeling. The book is illustrated throughout by a range of examples and applications that are supported by a companion website featuring data sets and R code that allow the reader to reproduce the examples given in the book.

Unlike other books on the market, Robust Statistics: Theory and Methods (with R) offers the most comprehensive, definitive, and up-to-date treatment of the subject. It features chapters on estimating location and scale; measuring robustness; linear regression with fixed and with random predictors; multivariate analysis; generalized linear models; time series; numerical algorithms; and asymptotic theory of M-estimates.

* Explains both the use and theoretical justification of robust methods

* Guides readers in selecting and using the most appropriate robust methods for their problems

* Features computational algorithms for the core methods

Robust statistics research results of the last decade included in this 2nd edition include: fast deterministic robust regression, finite-sample robustness, robust regularized regression, robust location and scatter estimation with missing data, robust estimation with independent outliers in variables, and robust mixed linear models.

Robust Statistics aims to stimulate the use of robust methods as a powerful tool to increase the reliability and accuracy of statistical modelling and data analysis. It is an ideal resource for researchers, practitioners, and graduate students in statistics, engineering, computer science, and physical and social sciences.

Ricardo A. Maronna, Consultant Professor, National University of La Plata, Argentina R. Douglas Martin, Departments of Applied Mathematics and Statistics, University of Washington, USA Victor J. Yohai, Department of Mathematics, University of Buenos Aires, and CONICET, Argentina Matías Salibián-Barrera, Department of Statistics, The University of British Columbia, Canada

Preface
Preface to the First Edition
About the Companion Website
1 Introduction
2 Location and Scale
3 Measuring Robustness
4 Linear Regression 1
5 Linear Regression 2
6 Multivariate Analysis
7 Generalized Linear Models
8 Time Series
9 Numerical Algorithms
10 Asymptotic Theory of M-estimators
11 Description of Datasets
References
Index

Erscheint lt. Verlag 25.10.2018
Reihe/Serie Wiley Series in Probability and Statistics
Wiley Series in Probability and Statistics
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Technik Elektrotechnik / Energietechnik
Schlagworte Electrical & Electronics Engineering • Elektrotechnik u. Elektronik • Mustererkennung • Pattern Analysis • Probability & Mathematical Statistics • Regression Analysis • Regressionsanalyse • Statistics • Statistik • Wahrscheinlichkeitsrechnung u. mathematische Statistik
ISBN-10 1-119-21467-X / 111921467X
ISBN-13 978-1-119-21467-0 / 9781119214670
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 5,3 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich