Meta-heuristic and Evolutionary Algorithms for Engineering Optimization (eBook)

eBook Download: PDF
2017 | 1. Auflage
304 Seiten
Wiley (Verlag)
978-1-119-38707-7 (ISBN)

Lese- und Medienproben

Meta-heuristic and Evolutionary Algorithms for Engineering Optimization -  Omid Bozorg-Haddad,  Mohammad Solgi,  Hugo A. Lo iciga
Systemvoraussetzungen
120,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
A detailed review of a wide range of meta-heuristic and evolutionary algorithms in a systematic manner and how they relate to engineering optimization problems This book introduces the main metaheuristic algorithms and their applications in optimization. It describes 20 leading meta-heuristic and evolutionary algorithms and presents discussions and assessments of their performance in solving optimization problems from several fields of engineering. The book features clear and concise principles and presents detailed descriptions of leading methods such as the pattern search (PS) algorithm, the genetic algorithm (GA), the simulated annealing (SA) algorithm, the Tabu search (TS) algorithm, the ant colony optimization (ACO), and the particle swarm optimization (PSO) technique. Chapter 1 of Meta-heuristic and Evolutionary Algorithms for Engineering Optimization provides an overview of optimization and defines it by presenting examples of optimization problems in different engineering domains. Chapter 2 presents an introduction to meta-heuristic and evolutionary algorithms and links them to engineering problems. Chapters 3 to 22 are each devoted to a separate algorithm and they each start with a brief literature review of the development of the algorithm, and its applications to engineering problems. The principles, steps, and execution of the algorithms are described in detail, and a pseudo code of the algorithm is presented, which serves as a guideline for coding the algorithm to solve specific applications. This book: Introduces state-of-the-art metaheuristic algorithms and their applications to engineering optimization; Fills a gap in the current literature by compiling and explaining the various meta-heuristic and evolutionary algorithms in a clear and systematic manner; Provides a step-by-step presentation of each algorithm and guidelines for practical implementation and coding of algorithms; Discusses and assesses the performance of metaheuristic algorithms in multiple problems from many fields of engineering; Relates optimization algorithms to engineering problems employing a unifying approach. Meta-heuristic and Evolutionary Algorithms for Engineering Optimization is a reference intended for students, engineers, researchers, and instructors in the fields of industrial engineering, operations research, optimization/mathematics, engineering optimization, and computer science. OMID BOZORG-HADDAD, PhD, is Professor in the Department of Irrigation and Reclamation Engineering at the University of Tehran, Iran. MOHAMMAD SOLGI, M.Sc., is Teacher Assistant for M.Sc. courses at the University of Tehran, Iran. HUGO A. LO ICIGA, PhD, is Professor in the Department of Geography at the University of California, Santa Barbara, United States of America.

Omid Bozorg-Haddad, PhD, is Professor in the Department of Irrigation and Reclamation Engineering at the University of Tehran, Iran. Mohammad Solgi, M.Sc., is Teacher Assistant for M.Sc. courses at the University of Tehran, Iran. Hugo A. Loáiciga, PhD, is Professor in the Department of Geography at the University of California, Santa Barbara, United States of America.

Erscheint lt. Verlag 30.8.2017
Reihe/Serie Wiley Series in Operations Research and Management Science
Wiley Series in Operations Research and Management Science
Sprache englisch
Themenwelt Informatik Theorie / Studium Algorithmen
Mathematik / Informatik Mathematik Angewandte Mathematik
Mathematik / Informatik Mathematik Finanz- / Wirtschaftsmathematik
Technik Elektrotechnik / Energietechnik
Schlagworte Algorithmen u. Datenstrukturen • Algorithms & Data Structures • Computer Science • Electrical & Electronics Engineering • Elektrotechnik u. Elektronik • Informatik • Mathematics • Mathematik • Numerical Methods & Algorithms • Numerische Methoden u. Algorithmen • Optimierung • Optimization
ISBN-10 1-119-38707-8 / 1119387078
ISBN-13 978-1-119-38707-7 / 9781119387077
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 3,0 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Build memory-efficient cross-platform applications using .NET Core

von Trevoir Williams

eBook Download (2024)
Packt Publishing (Verlag)
29,99
Learn asynchronous programming by building working examples of …

von Carl Fredrik Samson

eBook Download (2024)
Packt Publishing Limited (Verlag)
29,99