Fundamentals of Nanomechanical Resonators (eBook)

eBook Download: PDF
2016 | 1st ed. 2016
VIII, 175 Seiten
Springer International Publishing (Verlag)
978-3-319-28691-4 (ISBN)

Lese- und Medienproben

Fundamentals of Nanomechanical Resonators - Silvan Schmid, Luis Guillermo Villanueva, Michael Lee Roukes
Systemvoraussetzungen
96,29 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This authoritative book introduces and summarizes the latest models and skills required to design and fabricate nanomechanical resonators with a focus on nanomechanical sensing. It also establishes the theoretical foundation for courses on micro and nanomechanics. This book takes an applied approach to nanomechanics, providing a complete set of mechanical models, including strings and membrane resonators. Also discussed are quality factors, noise issues, transduction techniques, nanomechanical sensing, fabrication techniques, and applications for all common nanomechanical resonator types. It is an ideal book for students and researchers working with micro and nanomechanical resonators.

Silvan Schmid is Associate Professor of Micro and Nanotechnology at the Technical University of Denmark. His research focus is in micro- and nanomechanical resonators for sensor applications and fundamental research.

Guillermo Villanueva is Professor at Ecole Polytechnique Federale de Lausanne (EPFL). His fields of expertise are MEMS/NEMS, sensors, oscillators, nonlinear and coupled dynamics, and fundamental noise processes.

Michael Lee Roukes is Robert M. Abbey Professor of Physics, Applied Physics, and Biological Engineering at California Institute of Technology. He was founding Director of Caltech's Kavli Nanoscience Institute from 2003-2006, and Co-Director from 2008-2013.

Silvan Schmid is Associate Professor of Micro and Nanotechnology at the Technical University of Denmark. His research focus is in micro- and nanomechanical resonators for sensor applications and fundamental research.Guillermo Villanueva is Professor at Ecole Polytechnique Federale de Lausanne (EPFL). His fields of expertise are MEMS/NEMS, sensors, oscillators, nonlinear and coupled dynamics, and fundamental noise processes.Michael Lee Roukes is Robert M. Abbey Professor of Physics, Applied Physics, and Biological Engineering at California Institute of Technology. He was founding Director of Caltech’s Kavli Nanoscience Institute from 2003-2006, and Co-Director from 2008-2013.

Preface 6
Contents 8
1 Resonance Frequency 10
1.1 Eigenmodes of Ideal Continuum Mechanical Structures 11
1.1.1 One-Dimensional Bending Vibrations 15
1.1.1.1 Free Bending Vibration of Beams 16
1.1.1.2 Free Bending Vibration of Beams Under Tensile Stress (Strings) 23
1.1.2 One-Dimensional Bulk Vibrations 26
1.1.3 Two-Dimensional Bending Vibrations 29
1.1.3.1 Free Bending Vibration of Plates 30
1.1.3.2 Free Bending Vibration of Plates Under Tensile Stress (Membranes) 34
1.1.4 Torsional Vibration of Thin Beams 36
1.2 Lumped-Element Model Resonator 38
1.2.1 Damped Linear Resonator 38
1.2.1.1 Free Undamped Vibration 39
1.2.1.2 Free Damped Vibration 40
1.2.1.3 Driven Damped Vibration 41
1.2.1.4 Quality Factor 44
1.2.1.5 Effective Parameters 47
1.2.1.6 Torsional Paddle Resonator 49
1.2.2 Coupled Linear Resonators 51
1.2.3 Damped Nonlinear Resonators 54
1.2.3.1 Sources of Nonlinearity 55
1.2.3.2 Solving the Nonlinear Equation of Motion 59
References 63
2 Quality Factor 66
2.1 Medium Interaction Losses 67
2.1.1 Liquid Damping 67
2.1.1.1 Resonator Immersed in Liquid 67
2.1.1.2 Liquid Inside the Resonator 68
2.1.2 Gas Damping 70
2.1.2.1 Fluidic Regime (Kn< 1)
2.1.2.2 Ballistic Regime (Kn> 1)
2.2 Clamping Loss 75
2.2.1 Cantilever Beams 76
2.2.2 Membranes 77
2.3 Intrinsic Damping 78
2.3.1 Intrinsic Damping Mechanisms 78
2.3.1.1 Friction Losses 79
2.3.1.2 Fundamental Losses 86
2.3.2 Damping Dilution in Strings and Membranes 90
2.3.2.1 Damping Dilution in Strings 91
2.3.2.2 Damping Dilution in Membranes 94
References 97
3 Responsivity 100
3.1 Frequency Response to Mass 101
3.1.1 Point Mass 102
3.1.1.1 Strings 104
3.1.1.2 Beams 106
3.1.2 Distributed Mass 108
3.2 Amplitude and Frequency Response to Force 110
3.2.1 Amplitude Response to a Force 110
3.2.1.1 Quasi-Static Force Sensing (??) 111
3.2.1.2 Resonant Force Sensing (?=?) 111
3.2.2 Frequency Response to a Force Gradient 111
3.2.2.1 Frequency Response to an Electrostatic Potential 112
3.3 Frequency Response to Ambient Temperature and Local Heating 114
3.3.1 Stress Released Resonators 115
3.3.2 Resonators Under Tensile Stress (Strings) 117
3.3.2.1 Ambient Temperature 117
3.3.2.2 Local Heating at String Center 120
References 122
4 Transduction 124
4.1 Electrodynamic (Actuation and Detection) 125
4.1.1 Lorentz Force on a Straight Wire 126
4.1.2 Electrodynamically Induced Voltage (Electromotive Force) 127
4.2 Electrostatic (Actuation and Detection) 128
4.2.1 Electrostatic Forces 129
4.2.1.1 Forces Between Electrodes 130
4.2.1.2 Dielectric Polarization Force 132
4.2.2 Capacitively Induced Current 135
4.2.3 Other Capacitive Detection Schemes 140
4.3 Thermoelastic (Actuation) 140
4.4 Piezoresistive (Detection) 141
4.5 Piezoelectric (Actuation and Detection) 143
4.5.1 Piezoelectric Actuation 145
4.5.2 Piezoelectric Detection 146
4.6 Optic (Actuation and Detection) 147
4.6.1 Optical Forces 147
4.6.2 Interferometric Detection 148
4.6.3 Beam Deflection Detection 150
4.6.3.1 Optical Leverage 150
4.6.3.2 End-Coupled Optical Waveguide 151
4.6.4 Plasmonic Detection 151
References 152
5 Measurement and Noise 157
5.1 Amplitude Noise 157
5.1.1 Fundamentals 158
5.1.1.1 Transduction Chain Noise Transfer 158
5.1.1.2 Noise Referred to Input (RTI) 158
5.1.2 Thermomechanical Fluctuations 159
5.1.2.1 Amplitude Calibration 162
5.1.3 Transduction Related Noise 163
5.1.3.1 Johnson–Nyquist Thermal Noise 163
5.1.3.2 Shot Noise 165
5.1.3.3 Hooge (1/f) ``Flicker'' Noise 166
5.1.3.4 Noise Equivalent Circuit 167
5.1.4 Amplifier Noise 167
5.1.4.1 Noise Figure and Noise Temperature 170
5.2 Frequency Noise 171
5.2.1 Phase-Locked Loop 171
5.2.2 Self-Sustained Oscillator 173
5.2.3 Allan Variance 176
References 178
Index 181

Erscheint lt. Verlag 21.6.2016
Zusatzinfo VIII, 175 p. 90 illus., 66 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Technik Maschinenbau
Schlagworte Amplitude noise • Clamping loss • Continuum mechanical structures • Eigenmodes • Frequency noise • Frequency Response • Gas damping • Intrinsic damping • Liquid damping • Nanomechanical Sensing • Resonance frequency • Resonator Crystal • String Resonators • Thermoelastic Actuation • Top-down Fabrication • Transduction • vibrations
ISBN-10 3-319-28691-9 / 3319286919
ISBN-13 978-3-319-28691-4 / 9783319286914
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 5,3 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich