Modern Condensed Matter Physics - Steven M. Girvin, Kun Yang

Modern Condensed Matter Physics

Buch | Hardcover
714 Seiten
2019
Cambridge University Press (Verlag)
978-1-107-13739-4 (ISBN)
79,95 inkl. MwSt
This modern textbook offers graduate students a comprehensive and accessible route from fundamental concepts to modern topics, language, and methods in the field. Coverage includes disordered and mesoscopic systems, quantum magnetism, Bose–Einstein condensates, superconductivity, and quantum entanglement. It is an ideal reference for researchers.
Modern Condensed Matter Physics brings together the most important advances in the field of recent decades. It provides instructors teaching graduate-level condensed matter courses with a comprehensive and in-depth textbook that will prepare graduate students for research or further study as well as reading more advanced and specialized books and research literature in the field. This textbook covers the basics of crystalline solids as well as analogous optical lattices and photonic crystals, while discussing cutting-edge topics such as disordered systems, mesoscopic systems, many-body systems, quantum magnetism, Bose–Einstein condensates, quantum entanglement, and superconducting quantum bits. Students are provided with the appropriate mathematical background to understand the topological concepts that have been permeating the field, together with numerous physical examples ranging from the fractional quantum Hall effect to topological insulators, the toric code, and majorana fermions. Exercises, commentary boxes, and appendices afford guidance and feedback for beginners and experts alike.

Steven M. Girvin received his B.S. in 1971 from Bates College and his Ph.D. in 1977 from Princeton University. He joined the Yale University faculty in 2001, where he is Eugene Higgins Professor of Physics and Professor of Applied Physics. From 2007 to 2017 he served as Deputy Provost for Research. His research interests focus on theoretical condensed matter physics, quantum optics and quantum computation; he is co-developer of the circuit QED paradigm for quantum computation. His honours include: Fellow of American Physical Society, American Association for the Advancement of Science, American Academy of Arts and Sciences; Foreign Member of the Royal Swedish Academy of Sciences, Member US National Academy of Sciences; Oliver E. Buckley Prize of the American Physical Society (2007); Honorary doctorate, Chalmers University of Technology (2017); Conde Award for Teaching Excellence (2003). Kun Yang received his B.S. in 1989 from Fudan University and his Ph.D. in 1994 from Indiana University. He joined the faculty of Florida State University in 1999 where he is now Mckenzie Professor of Physics. His research focuses on many-particle physics in condensed matter and trapped cold atom systems. His honours include: Fellow of American Physical Society, American Association for the Advancement of Science, Alfred Sloan Research Fellowship (1999), Outstanding Young Researcher Award, Overseas Chinese Physics Association (2003).

Preface; Acknowledgements; 1. Overview of condensed matter physics; 2. Spatial structure; 3 Lattices and symmetries; 4. Neutron scattering; 5. Dynamics of lattice vibrations; 6. Quantum theory of harmonic crystals; 7. Electronic structure of crystals; 8. Semiclassical transport theory; 9. Semiconductors; 10. Non-local transport in mesoscopic systems; 11. Anderson localization; 12. Integer quantum Hall effect; 13. Topology and Berry phase; 14. Topological insulators and semimetals; 15. Interacting electrons; 16. Fractional quantum Hall effect; 17. Magnetism; 18. Bose–Einstein condensation and superuidity; 19. Superconductivity: basic phenomena and phenomenological theories; 20. Microscopic theory of superconductivity; Appendix A. Linear response theory; Appendix B. The Poisson summation formula; Appendix C. Tunneling and scanning tunneling microscopy; Appendix D. Brief primer on topology; Appendix E. Scattering matrices, unitarity and reciprocity; Appendix F. Quantum entanglement in condensed matter physics; Appendix G. Linear reponse and noise in electrical circuits; Appendix H. Functional differentiation; Appendix I. Low-energy effective hamiltonians; Appendix J. Introduction to second quantization; Bibliography; Index.

Zusatzinfo 2 Tables, black and white; 3 Halftones, black and white; 244 Line drawings, black and white
Verlagsort Cambridge
Sprache englisch
Maße 193 x 253 mm
Gewicht 1680 g
Themenwelt Naturwissenschaften Physik / Astronomie Festkörperphysik
Naturwissenschaften Physik / Astronomie Quantenphysik
Technik Maschinenbau
ISBN-10 1-107-13739-X / 110713739X
ISBN-13 978-1-107-13739-4 / 9781107137394
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Festkörperphysik

von Gerhard Franz

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
89,95

von Siegfried Hunklinger; Christian Enss

Buch | Softcover (2023)
De Gruyter Oldenbourg (Verlag)
89,95

von Rudolf Gross; Achim Marx

Buch | Hardcover (2022)
De Gruyter Oldenbourg (Verlag)
79,95