Engineering Haptic Devices (eBook)
XXXIII, 573 Seiten
Springer London (Verlag)
978-1-4471-6518-7 (ISBN)
In this greatly reworked second edition of Engineering Haptic Devices the psychophysic content has been thoroughly revised and updated. Chapters on haptic interaction, system structures and design methodology were rewritten from scratch to include further basic principles and recent findings. New chapters on the evaluation of haptic systems and the design of three exemplary haptic systems from science and industry have been added.
This book was written for students and engineers that are faced with the development of a task-specific haptic system. It is a reference book for the basics of haptic interaction and existing haptic systems and methods as well as an excellent source of information for technical questions arising in the design process of systems and components.
Divided into two parts, part 1 contains typical application areas of haptic systems and a thorough analysis of haptics as an interaction modality. The role of the user in the design of haptic systems is discussed and relevant design and development stages are outlined. Part II presents all relevant problems in the design of haptic systems including general system and control structures, kinematic structures, actuator principles and sensors for force and kinematic measures. Further chapters examine interfaces and software development for virtual reality simulations.
In this greatly reworked second edition of Engineering Haptic Devices the psychophysic content has been thoroughly revised and updated. Chapters on haptic interaction, system structures and design methodology were rewritten from scratch to include further basic principles and recent findings. New chapters on the evaluation of haptic systems and the design of three exemplary haptic systems from science and industry have been added.This book was written for students and engineers that are faced with the development of a task-specific haptic system. It is a reference book for the basics of haptic interaction and existing haptic systems and methods as well as an excellent source of information for technical questions arising in the design process of systems and components.Divided into two parts, part 1 contains typical application areas of haptic systems and a thorough analysis of haptics as an interaction modality. The role of the user in the design of haptic systems is discussed and relevant design and development stages are outlined. Part II presents all relevant problems in the design of haptic systems including general system and control structures, kinematic structures, actuator principles and sensors for force and kinematic measures. Further chapters examine interfaces and software development for virtual reality simulations.
Series Editors’ Foreword 6
Preface 8
Contents 12
Symbols 20
Abbreviations 27
Contributors 29
Further Contributions 33
Part IBasics 34
1 Motivation and Application of Haptic Systems 35
1.1 Philosophical and Social Aspects 36
1.1.1 Haptics as a Physical Being's Boundary 36
1.1.2 Formation of the Sense of Touch 37
1.1.3 Touchable Art and Haptic Aesthetics 38
1.2 Technical Definitions of Haptics 40
1.2.1 Definitions of Haptic Interactions 41
1.2.2 Taxonomy of Haptic Perception 43
1.3 Application Areas of Haptic Systems 45
1.3.1 Telepresence, Teleaction, and Assistive Systems 47
1.3.2 Virtual Environments 49
1.3.3 Noninvasive Medical Applications 52
1.3.4 Communication 53
1.3.5 Why Use a Haptic System? 54
1.4 Conclusions 55
References 55
2 Haptics as an Interaction Modality 61
2.1 Haptic Perception 61
2.1.1 Physiological Basis 62
2.1.2 Psychophysical Description of Perception 70
2.1.3 Characteristic Values of Haptic Perception 85
2.1.4 Further Aspects of Haptic Perception 97
2.2 Concepts of Interaction 101
2.2.1 Haptic Exploration of Objects 101
2.2.2 Active and Passive Touch 101
2.2.3 Gestures 103
2.2.4 Human Movement Capabilities 104
2.3 Interaction Using Haptic Systems 105
2.3.1 Haptic Displays and General Input Devices 106
2.3.2 Assistive Systems 108
2.3.3 Haptic Interfaces 108
2.3.4 Manipulators 111
2.3.5 Teleoperators 111
2.3.6 Comanipulators 112
2.3.7 Haptic System Control 113
2.4 Engineering Conclusions 113
2.4.1 A Frequency-Dependent Model of Haptic Properties 113
2.4.2 Stiffnesses 116
2.4.3 One Kilohertz: Significance for the Mechanical Design 116
2.4.4 Perception-Inspired Concepts for Haptic System Design 119
References 121
3 The User's Role in Haptic System Design 133
3.1 The User as Mechanical Load 133
3.1.1 Mapping of Frequency Ranges onto the User's Mechanical Model 133
3.1.2 Modeling the Mechanical Impedance 136
3.1.3 Grips and Grasps 137
3.1.4 Measurement Setup and Equipment 139
3.1.5 Models 140
3.1.6 Modeling Parameters 142
3.1.7 Comparison with Existing Models 150
3.1.8 Final Remarks on Impedances 152
3.2 The User as a Measure of Quality 152
3.2.1 Resolution of Haptic Systems 152
3.2.2 Errors and Reproducibility 153
3.2.3 Quality of Haptic Interaction 153
References 154
4 Development of Haptic Systems 156
4.1 Application of Mechatronic Design Principles to Haptic Systems 156
4.1.1 Stage 1: System Requirements 158
4.1.2 Stage 2: System Design 159
4.1.3 Stage 3: Modeling and Design of Components 160
4.1.4 Stage 4: Realization and Verification of Components and System 161
4.1.5 Stage 5: Validation of the Haptic System 162
4.2 General Design Goals 162
4.3 Technical Descriptions of Parts and System Components 163
4.3.1 Single Input, Single Output Descriptions 164
4.3.2 Network Parameter Description 165
4.3.3 Finite Element Methods 167
4.3.4 Description of Kinematic Structures 168
References 171
Part IIDesigning Haptic Systems 173
5 Identification of Requirements 175
5.1 Definition of Application: The Right Questions to Ask 175
5.1.1 Experiments with the Customer 176
5.1.2 General Design Guidelines 178
5.2 Interaction Analysis 179
5.3 Technical Solution Clusters 183
5.3.1 Cluster 192: Kinaesthetic 185
5.3.2 Cluster 193: Surface-Tactile 186
5.3.3 Cluster 194: Vibro-Tactile 186
5.3.4 Cluster 195: Vibro-Directional 187
5.3.5 Cluster 196: Omnidirectional 188
5.3.6 General Requirement Sources 188
5.4 Safety Requirements 189
5.4.1 Safety Standards 189
5.4.2 Definition of Safety Requirements from Risk Analysis 190
5.5 Requirement Specifications of a Haptic System 196
References 196
6 General System Structures 198
6.1 Open-Loop Impedance Controlled 199
6.2 Closed-Loop Impedance Controlled 200
6.3 Open-Loop Admittance Controlled 202
6.4 Closed-Loop Admittance Controlled Devices 202
6.5 Qualitative Comparison of the Internal Structures of Haptic Systems 205
6.5.1 Tactile Devices 206
6.5.2 Kinaesthetic Devices 206
6.6 How to Choose a Suitable System Structure 207
7 Control of Haptic Systems 209
7.1 System Description 210
7.1.1 Linear State Space Description 211
7.1.2 Nonlinear System Description 212
7.2 System Stability 214
7.2.1 Analysis of Linear System Stability 215
7.2.2 Analysis of Nonlinear System Stability 218
7.3 Control Law Design for Haptic Systems 225
7.3.1 Structuring of Control Design 225
7.3.2 Requirement Definition 227
7.3.3 General Control Law Design 229
7.3.4 Example: Cascade Control of a Linear Drive 234
7.4 Control of Teleoperation Systems 236
7.4.1 Two-Port Representation 237
7.4.2 Transparency 238
7.4.3 General Control Model for Teleoperators 242
7.4.4 Stability Analysis of Teleoperators 245
7.4.5 Effects of Time Delay 247
7.5 Conclusion 250
References 251
8 Kinematic Design 254
8.1 Introduction and Classification 254
8.1.1 Classification of Mechanisms 256
8.2 Design Step 1: Topological Synthesis---Defining the Mechanism's Structure 258
8.2.1 Synthesis of Serial Mechanisms 258
8.2.2 Synthesis of Parallel Mechanisms 259
8.2.3 Special Case: Parallel Mechanisms with Pure Translational Motion 260
8.2.4 Example: The DELTA Mechanism 262
8.3 Design Step 2: Kinematic Equations 264
8.3.1 Kinematics: Basic Equations for Design and Operation 266
8.3.2 Example: The DELTA Mechanism 268
8.4 Design Step 3: Dimensioning 271
8.4.1 Isotropy and Singular Positions 272
8.4.2 Example: The DELTA Mechanism 277
References 278
9 Actuator Design 280
9.1 General Facts About Actuator Design 281
9.1.1 Overview of Actuator Principles 281
9.1.2 Actuator Selection Aid Based on Its Dynamics 284
9.1.3 Gears 285
9.2 Electrodynamic Actuators 288
9.2.1 The Electrodynamic Effect and Its Influencing Variables 289
9.2.2 Actual Actuator Design 303
9.2.3 Actuator Electronics 308
9.2.4 Examples for Electrodynamic Actuators in Haptic Devices 313
9.2.5 Conclusion About the Design of Electrodynamic Actuators 315
9.3 Piezoelectric Actuators 315
9.3.1 The Piezoelectric Effect 316
9.3.2 Designs and Properties of Piezoelectric Actuators 321
9.3.3 Design of Piezoelectric Actuators for Haptic Systems 325
9.3.4 Procedure for the Design of Piezoelectric Actuators 326
9.3.5 Piezoelectric Actuators in Haptic Systems 331
9.4 Electromagnetic Actuators 341
9.4.1 Magnetic Energy 341
9.4.2 Design of Magnetic Circuits 344
9.4.3 Examples for Electromagnetic Actuators 348
9.4.4 Magnetic Actuators in Haptic Devices 351
9.4.5 Conclusion on the Design of Magnetic Actuators 353
9.5 Electrostatic Actuators 354
9.5.1 Definition of Electric Field 354
9.5.2 Designs of Capacitive Actuators with Air-Gap 356
9.5.3 Dielectric Elastomer Actuators 362
9.5.4 Designs of Dielectric Elastomer Actuators 365
9.5.5 Electrorheological Fluids 369
9.6 Special Designs of Haptic Actuators 377
9.6.1 Haptic-Kinaesthetic Devices 377
9.6.2 Haptic-Tactile Devices 383
References 391
10 Sensor Design 399
10.1 Force Sensors 399
10.1.1 Constraints 400
10.1.2 Sensing Principles 406
10.1.3 Selection of a Suitable Sensor 439
10.2 Positioning Sensors 445
10.2.1 Basic Principles of Position Measurement 445
10.2.2 Requirements in the Context of Haptics 447
10.2.3 Optical Sensors 448
10.2.4 Magnetic Sensors 451
10.2.5 Other Displacement Sensors 453
10.2.6 Electronics for Absolute Positions Sensors 454
10.2.7 Acceleration and Velocity Measurement 455
10.2.8 Conclusion on Position Measurement 458
10.3 Touch Sensors 459
10.3.1 Resistive Touch Sensors 459
10.3.2 Capacitive Touch Sensors 460
10.3.3 Other Principles 461
10.4 Imaging Sensors 462
10.5 Conclusion 462
References 463
11 Interface Design 469
11.1 Border Frequency of the Transmission Chain 470
11.1.1 Bandwidth in a Telemanipulation System 470
11.1.2 Bandwidth in a Simulator System 471
11.1.3 Data Rates and Latencies 472
11.2 Concepts for Bandwidth Reduction 473
11.2.1 Analysis of the Required Dynamics 473
11.2.2 Local Haptic Model in the Controller 473
11.2.3 Event-Based Haptics 474
11.2.4 Movement Extrapolation 476
11.2.5 Compensation of Extreme Dead Times 476
11.2.6 Compression 476
11.3 Technical Standard Interfaces 477
11.3.1 Serial Port 477
11.3.2 Parallel Port 478
11.3.3 USB 479
11.3.4 FireWire: IEEE1394 480
11.3.5 Ethernet 480
11.3.6 Measurement Equipment and Multifunctional Interface Cards 481
11.3.7 HIL Systems 481
11.4 Final Remarks on Interface Technology 481
References 482
12 Software Design for Virtual Reality Applications 483
12.1 Overview About the Subject ``Virtual Reality'' 484
12.1.1 Immersion 484
12.1.2 Natural Interaction 484
12.1.3 Natural Object Behavior 485
12.2 Design and Architecture of VR Systems 487
12.2.1 Hardware Components 487
12.2.2 Device Integration and Device Abstraction 488
12.2.3 Software Components 490
12.2.4 Simulation 492
12.2.5 Subsystems for Rendering 495
12.2.6 Decoupling of the Haptic Renderer from Other Sense Modalities 497
12.2.7 Haptic Interaction Metaphors 499
12.3 Algorithms 500
12.3.1 Virtual Wall 502
12.3.2 ``Penalty'' Methods 505
12.3.3 Constraint-Based Methods 507
12.3.4 6 DoF Interaction: Voxmap-PointShell Algorithm 510
12.3.5 Collision Detection 516
12.4 Software Packages for Haptic Applications 523
12.5 Perception-Based Concepts for VR software 525
12.5.1 Event-Based Haptics 525
12.5.2 Pseudo-haptic Feedback 525
12.6 Conclusion 526
References 526
13 Evaluation of Haptic Systems 528
13.1 System-Centered Evaluation Methods 529
13.1.1 Workspace 530
13.1.2 Output Force-Depending Values 530
13.1.3 Output Motion-Depending Values 533
13.1.4 Mechanical Properties 533
13.1.5 Impedance Measurements 534
13.1.6 Special Properties 536
13.1.7 Measurement of Psychophysical Parameters 536
13.2 Task-Centered Evaluation Methods 537
13.2.1 Task Performance Tests 537
13.2.2 Identification of Haptic Properties and Signals 539
13.2.3 Information Input Capacity (Fitts' Law) 541
13.3 User-Centered Evaluation Methods 543
13.3.1 Workload 543
13.3.2 Subjective Evaluation 545
13.3.3 Learning Effects 546
13.3.4 Effects on Performance in Other Domains 546
13.4 Conclusion 547
References 547
14 Examples of Haptic System Development 550
14.1 Tactile You-Are-Here Maps 551
14.1.1 Introduction 551
14.1.2 The TacYAH Map Prototype 552
14.1.3 Evaluation 557
14.1.4 Conclusion and Outlook 557
14.2 Automotive Interface with Tactile Feedback 557
14.2.1 Context 558
14.2.2 The Floating TouchPad of Mercedes Benz 559
14.2.3 Actuator Design 561
14.2.4 Evaluation 566
14.2.5 Discussion and Outlook 569
14.3 HapCath: Haptic Catheter 571
14.3.1 Introduction 571
14.3.2 Deriving Requirements 572
14.3.3 Design and Development 573
14.3.4 Verification and Validation 576
14.3.5 Conclusion and Outlook 577
References 577
15 Conclusion 580
Appendix A Impedance Values of Grasps 582
Appendix B URLs 584
Glossary 589
Index 590
Erscheint lt. Verlag | 15.9.2014 |
---|---|
Reihe/Serie | Springer Series on Touch and Haptic Systems | Springer Series on Touch and Haptic Systems |
Zusatzinfo | XXXIII, 573 p. 352 illus. |
Verlagsort | London |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Informatik ► Betriebssysteme / Server |
Informatik ► Software Entwicklung ► User Interfaces (HCI) | |
Mathematik / Informatik ► Informatik ► Theorie / Studium | |
Technik ► Elektrotechnik / Energietechnik | |
Schlagworte | Design Methodology • haptic interaction • Haptic System Design • Psychophysic Content • Virtual Reality Systems |
ISBN-10 | 1-4471-6518-7 / 1447165187 |
ISBN-13 | 978-1-4471-6518-7 / 9781447165187 |
Haben Sie eine Frage zum Produkt? |
Größe: 24,3 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich