Advances in Imaging and Electron Physics

Advances in Imaging and Electron Physics (eBook)

eBook Download: PDF | EPUB
2014 | 1. Auflage
262 Seiten
Elsevier Science (Verlag)
978-0-12-800308-4 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
185,00 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Advances in Imaging & Electron Physics merges two long-running serials-Advances in Electronics & Electron Physics and Advances in Optical & Electron Microscopy. The series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains. - Contributions from leading authorities - Informs and updates on all the latest developments in the field
Advances in Imaging & Electron Physics merges two long-running serials-Advances in Electronics & Electron Physics and Advances in Optical & Electron Microscopy. The series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains. - Contributions from leading authorities- Informs and updates on all the latest developments in the field

Front Cover 1
EDITOR-IN-CHIEF 3
ADVANCES IN IMAGING AND ELECTRON PHYSICS 4
Copyright 5
CONTENTS 6
PREFACE 8
FUTURE CONTRIBUTIONS 10
CONTRIBUTORS 14
Chapter 1 - Gaussian Beam Propagation in Inhomogeneous Nonlinear Media. Description in Ordinary Differential Equations by C ... 16
1. INTRODUCTION 17
2. CGO: FUNDAMENTAL EQUATIONS, MAIN ASSUMPTIONS, AND BOUNDARY OF APPLICABILITY 21
3. GAUSSIAN BEAM DIFFRACTION IN FREE SPACE. CGO METHOD AND CLASSICAL DIFFRACTION THEORY 26
4. ON-AXIS PROPAGATION OF AN AXIALLY SYMMETRIC GAUSSIAN BEAM IN SMOOTHLY INHOMOGENEOUS MEDIA 30
5. GENERALIZATION OF THE CGO METHOD FOR NONLINEAR INHOMOGENEOUS MEDIA 33
6. SELF-FOCUSING OF AN AXIALLY SYMMETRIC GAUSSIAN BEAM IN A NONLINEAR MEDIUM OF THE KERR TYPE. THE CGO METHOD AND SOLUTIONS OF ... 35
7. SELF-FOCUSING OF ELLIPTICAL GB PROPAGATING IN A NONLINEAR MEDIUM OF THE KERR TYPE 36
8. ROTATING ELLIPTICAL GAUSSIAN BEAMS IN NONLINEAR MEDIA 38
9. ORTHOGONAL RAY-CENTERED COORDINATE SYSTEM FOR ROTATING ELLIPTICAL GAUSSIAN BEAMS PROPAGATING ALONG A CURVILINEAR TRAJECTORY ... 41
10. COMPLEX ORDINARY DIFFERENTIAL RICCATI EQUATIONS FOR ELLIPTICAL ROTATING GB PROPAGATING ALONG A CURVILINEAR TRAJECTORY IN A ... 43
11. ORDINARY DIFFERENTIAL EQUATION FOR THE COMPLEX AMPLITUDE AND FLUX CONSERVATION PRINCIPLE FOR A SINGLE ROTATING ELLIPTICAL G ... 47
12. GENERALIZATION OF THE CGO METHOD FOR N-ROTATING GBS PROPAGATING ALONG A HELICAL RAY IN NONLINEAR GRADED-INDEX FIBER 48
13. SINGLE-ROTATING GB. EVOLUTION OF BEAM CROSS SECTION AND WAVE-FRONT CROSS SECTION 51
14. PAIR OF ROTATING GBS 63
15. THREE- AND FOUR-ROTATING GBS 90
16. CONCLUSION 121
REFERENCES 124
Chapter 2 - Single-Particle Cryo-Electron Microscopy (Cryo-EM): Progress, Challenges, and Perspectives for Further Improvement 128
1. INTRODUCTION 129
2. GOING BEYOND LARGE PARTICLES WITH HIGH SYMMETRY: DEFINING THE PROBLEM 132
3. PERSPECTIVES FOR FURTHER IMPROVEMENT OF SINGLE-PARTICLE CRYO-EM 146
4. SUMMARY: HIGH-RESOLUTION STRUCTURE ANALYSIS BY CRYO-EM SEEMS TO BE RAPIDLY APPROACHING ITS FULL POTENTIAL 149
ACKNOWLEDGMENTS 150
REFERENCES 150
Chapter 3 - Morphological Amoebas and Partial Differential Equations 154
1. INTRODUCTION 155
2. DISCRETE AMOEBA ALGORITHMS 162
3. CONTINUOUS AMOEBA FILTERING 170
4. SPACE-CONTINUOUS ANALYSIS OF AMOEBA FILTERS 174
5. PRESMOOTHING AND AMOEBA FILTERS 202
6. EXPERIMENTS 206
7. CONCLUSION 213
APPENDIX 215
REFERENCES 223
Contents of Volumes 151-184 228
Volume 151 228
Volume 152 228
Volume 153 228
Volume 154 229
Volume 155 229
Volume 156 229
Volume 157 229
Volume 158 229
Volume 159 229
Volume 160 229
Volume 161 230
Volume 162 230
Volume 163 230
Volume 164 230
Volume 165 230
Volume 166 230
Volume 167 231
Volume 168 231
Volume 169 231
Volume 170 231
Volume 171 231
Volume 172 232
Volume 173 232
Volume 174 232
Volume 175 232
Volume 176 232
Volume 177 232
Volume 178 232
Volume 179 233
Volume 180 233
Volume 181 233
Volume 182 233
Volume 183 233
Volume 184 233
INDEX 234
Colour Plates 238

Chapter One

Gaussian Beam Propagation in Inhomogeneous Nonlinear Media


Description in Ordinary Differential Equations by Complex Geometrical Optics


Pawel Berczynski1 and Slawomir Marczynski2     1Institute of Physics, West Pomeranian University of Technology, Szczecin 70-310, Poland     2Faculty of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology, Szczecin 70-310, Poland

Abstract


The method of complex geometrical optics (CGO) is presented, which describes the rotation of Gaussian beam (GB) propagating along a curvilinear trajectory in a smoothly inhomogeneous and nonlinear saturable optical medium. The CGO method reduces the problem of Gaussian beam diffraction and self-focusing in inhomogeneous and nonlinear media to the system of the first-order ordinary differential equations for the complex curvature of the wave front and for GB amplitude, which can be readily solved both analytically and numerically. As a result, CGO radically simplifies the description of Gaussian beam diffraction and self-focusing effects as opposed to the other methods of nonlinear optics, such as the variational method approach, method of moments, and beam propagation method. We first present a short review of the applicability of the CGO method to solve the problem of GB evolution in inhomogeneous linear and nonlinear media of the Kerr type. Moreover, we discuss the accuracy of the CGO method by comparing obtained solutions with known results of nonlinear optics obtained by the nonlinear parabolic equation within an aberration-less approximation. The power of the CGO method is presented by showing the example of N-rotating GBs interacting in a nonlinear inhomogeneous medium. We demonstrate the great ability of the CGO method by presenting explicitly the evolution of beam intensities and wave front cross sections for two, three, and four interacting beams. To our knowledge, the analyzed phenomenon of N-interacting rotating beams is a new problem of nonlinear wave optics, which demands a simple and effective method of solving it. Thus, we believe that the CGO method can be an interesting and effective tool to use to address sophisticated problems in electron physics.

Keywords


rotating Gaussian beams interacting in nonlinear medium; self-focusing; light diffraction; complex geometrical optics

1. Introduction


In the traditional understanding, geometrical optics is a method assigned to describe trajectories of rays, along which the phase and amplitude of a wave field can be calculated via diffractionless approximation (Kravtsov & Orlov 1990; Kravtsov, Kravtsov, & Zhu, 2010). Complex generalization of the classical geometrical optics theory allows one to include diffraction processes into the scope of consideration, which characterize wave rather than geometrical features of wave beams (by diffraction, we mean diffraction spreading of the wave beam, which results in GB having inhomogeneous waves). Although the first attempts to introduce complex rays and complex incident angles started before World War II, the real understanding of the potential of complex geometrical optics (CGO) began with the work of Keller (1958), which contains the consistent definition of a complex ray. Actually, the CGO method took two equivalent forms: the ray-based form, which deals with complex rays—i.e., trajectories in complex space (Kravtsov et al., 2010; Kravtsov, Forbes, & Asatryan 1999; Chapman et al. 1999; Kravtsov 1967)—and the eikonal-based form, which uses complex eikonal instead of complex rays (Keller & Streifer 1971; Kravtsov et al., 2010; Kravtsov, Forbes, & Asatryan 1999; Kravtsov 1967). The ability of the CGO method to describe the diffraction of GB on the basis of complex Hamiltonian ray equations was demonstrated many years ago in the framework of the ray-based approach. Development of numerical methods in the framework of the ray-based CGO in the recent years allowed for the description of GB diffraction in inhomogeneous media, including GB focusing by localized inhomogeneities (Deschamps 1971; Egorchenkov & Kravtsov 2000) and reflection from a linear-profile layer (Egorchenkov & Kravtsov 2001). The evolution of paraxial rays through optical structures also was studied by Kogelnik and Li (1966), who introduced the concept of a very convenient ray-transfer matrix (also see Arnaud 1976). This method of transformation is known as the ABCD matrix method (Akhmediev 1998; Stegeman & Segev 1999; Chen, Segev, & Christodoulides 2012; Agrawal 1989).
The eikonal-based CGO, which deals with complex eikonal and complex amplitude was essentially influenced by quasi-optics (Fox 1964), which is based on the parabolic wave equation (PWE; Fox 1964; Babi? & Buldyrev 1991; Kogelnik 1965; Kogelnik & Li 1966; Arnaud 1976; Akhmanov & Nikitin 1997; Pereverzev 1993). In the case of a spatially narrow wave beam concentrated in the vicinity of the central ray, the parabolic equation reduces to the abridged PWE (Vlasov & Talanov 1995; Permitin & Smirnov 1996), which preserves only quadratic terms in small deviations from the central ray. The abridged PWE allows for describing the electromagnetic GB evolution in inhomogeneous and anisotropic plasmas (Pereverzev 1998) and in optically smoothly inhomogeneous media (Permitin & Smirnov 1996). The description of GB diffraction by the abridged PWE is an essential feature of quasi-optical model. It is a convenient simplification, nevertheless it still requires solving of partial differential equations.
The essential step in the development of quasi-optics was done in various studies that analyzed laser beams by introducing a quasi-optical complex parameter q (Kogelnik 1965; Kogelnik and Li 1966), which allows for solving the parabolic equation in a more compact way, taking into account the wave nature of the beams. The obtained PWE solution enables one to determine such GB parameters as beam width, amplitude, and wave front curvature. The quasi-optical approach is very convenient and commonly used in the framework of beam transmission and transformation through optical systems. However, modeling GB evolution by means of the quasi-optical parameter q using the ABCD matrix is effective for GB propagation in free space or along axial symmetry in graded-index optics (on axis beam propagation) when the A,B,C, and D elements of the transformation matrix are known. Thus, the problem of GB evolution along curvilinear trajectories requires the solution of the parabolic equation, which is complicated even for inhomogeneous media (Vlasov & Talanov 1995). In fact, the description of GB evolution along curvilinear trajectories by means of the parabolic equation is limited only to the consideration of linear inhomogeneous media (Pereverzev 1998; Vlasov & Talanov 1995; Permitin & Smirnov 1996). In our opinion, the eikonal-based form of the paraxial CGO seems to be a more powerful and simpler tool involving wave theory, as opposed to quasi-optics based on the parabolic equation, and even the CGO ray-based version based on Hamiltonian equations.
The problem of Gaussian beam self-focusing in nonlinear media was usually studied by solving the nonlinear parabolic equation (Akhmanov, Sukhorukov, & Khokhlov 1968; Akhmanov, Khokhlov, & Sukhorukov 1972). The abberrationless approximation enables to reduce the nonlinear parabolic equation to solving the second-order ordinary differential equation for Gaussian beam width evolution in a nonlinear medium of the Kerr type, but the procedure is complicated. Because of the general refraction coefficient, the CGO method presented in this paper deals with ordinary differential equations; it does not ask to reduce diffraction and self-focusing descriptions starting every time from partial differential equations. The well-known approaches of nonlinear optics, such as the variational method and method of moments, demand that the nonlinear parabolic equation gets solved by complicated integral procedures of theoretical physics, which can be unfamiliar to engineers of optoelectronics, computer modeling, and electron physics. It is worthwhile to emphasize that the variational method and method of moments have been applied to model Gaussian beam evolution in nonlinear graded-index fibers (Manash, Baldeck, & Alfano 1988; Karlsson, Anderson, & Desaix 1992; Paré & Bélanger 1992; Perez-Garcia et al. 2000; Malomed 2002; Longhi & Janner 2004). Moreover, analogous solutions can be obtained by the CGO method in a more convenient and illustrative way. The CGO method deals with Gaussian beams, which are convenient and appropriate wave objects to model famous optical solutions (Anderson 1983; Hasegawa 1990; Akhmediev 1998; Stegeman and Segev 1999; Chen, Segev, & Christodoulides 2012) propagating in nonlinear optical fibers (Agrawal 1989).
The CGO method presented in this paper has been applied in the past to describe GB evolution in inhomogeneous media (Berczynski and Kravtsov 2004; Berczynski et al. 2006), nonlinear media of the Kerr type (Berczynski, Kravtsov, & Sukhorukov 2010), nonlinear inhomogeneous fibers (Berczynski 2011) and nonlinear saturable media (Berczynski 2012,...

Erscheint lt. Verlag 17.7.2014
Mitarbeit Herausgeber (Serie): Peter W. Hawkes
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Theorie / Studium
Naturwissenschaften Physik / Astronomie Atom- / Kern- / Molekularphysik
Naturwissenschaften Physik / Astronomie Elektrodynamik
Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
ISBN-10 0-12-800308-1 / 0128003081
ISBN-13 978-0-12-800308-4 / 9780128003084
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 20,6 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 28,1 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Discover tactics to decrease churn and expand revenue

von Jeff Mar; Peter Armaly

eBook Download (2024)
Packt Publishing (Verlag)
25,19