Making Sense of Data I (eBook)

A Practical Guide to Exploratory Data Analysis and Data Mining
eBook Download: PDF
2014 | 2. Auflage
256 Seiten
John Wiley & Sons (Verlag)
978-1-118-42201-4 (ISBN)

Lese- und Medienproben

Making Sense of Data I - Glenn J. Myatt, Wayne P. Johnson
Systemvoraussetzungen
70,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Praise for the First Edition

"...a well-written book on data analysis and
data mining that provides an excellent foundation..."

--CHOICE

"This is a must-read book for learning practical
statistics and data analysis..."

--Computing Reviews.com



A proven go-to guide for data analysis, Making Sense of Data
I: A Practical Guide to Exploratory Data Analysis and Data Mining,
Second Edition focuses on basic data analysis approaches that
are necessary to make timely and accurate decisions in a diverse
range of projects. Based on the authors' practical experience
in implementing data analysis and data mining, the new edition
provides clear explanations that guide readers from almost every
field of study.
In order to facilitate the needed steps when handling a data
analysis or data mining project, a step-by-step approach aids
professionals in carefully analyzing data and implementing results,
leading to the development of smarter business decisions. The tools
to summarize and interpret data in order to master data analysis
are integrated throughout, and the Second Edition also
features:

* Updated exercises for both manual and computer-aided
implementation with accompanying worked examples

* New appendices with coverage on the freely available
Traceis(TM) software, including tutorials using data from a
variety of disciplines such as the social sciences, engineering,
and finance

* New topical coverage on multiple linear regression and logistic
regression to provide a range of widely used and transparent
approaches

* Additional real-world examples of data preparation to establish
a practical background for making decisions from data

Making Sense of Data I: A Practical Guide to Exploratory Data
Analysis and Data Mining, Second Edition is an excellent
reference for researchers and professionals who need to achieve
effective decision making from data. The Second Edition is
also an ideal textbook for undergraduate and graduate-level courses
in data analysis and data mining and is appropriate for
cross-disciplinary courses found within computer science and
engineering departments.

Glenn J. Myatt, PhD, is Chief Scientific Officer and Cofounder of Leadscope, Inc. The author of numerous journal articles, Dr. Myatt, is also the coauthor of Making Sense of Data II: A Practical Guide to Data Visualization, Advanced Data Mining Methods, and Applications and Making Sense of Data III: A Practical Guide to Designing Interactive Data Visualizations, both of which are published by Wiley. Wayne P. Johnson, MSc, is Cofounder of Leadscope, Inc., as well as a partner of Myatt & Johnson, Inc. He has over 35 years of experience in software engineering related to operating systems, telecommunications, and artificial intelligence at various companies including IBM, AT&T Bell Laboratories, and Ford Motor Company. He has led research projects related to informatics, and in addition to authoring numerous journal articles, Mr. Johnson is the coauthor of Making Sense of Data II: A Practical Guide to Data Visualization, Advanced Data Mining Methods, and Applications and Making Sense of Data III: A Practical Guide to Designing Interactive Data Visualizations, both of which are published by Wiley.

Preface ix

1 Introduction 1

1.1 Overview 1

1.2 Sources of Data 2

1.3 Process for Making Sense of Data 3

1.4 Overview of Book 13

1.5 Summary 16

Further Reading 16

2 Describing Data 17

2.1 Overview 17

2.2 Observations and Variables 18

2.3 Types of Variables 20

2.4 Central Tendency 22

2.5 Distribution of the Data 24

2.6 Confidence Intervals 36

2.7 Hypothesis Tests 40

Exercises 42

Further Reading 45

3 Preparing Data Tables 47

3.1 Overview 47

3.2 Cleaning the Data 48

3.3 Removing Observations and Variables 49

3.4 Generating Consistent Scales Across Variables 49

3.5 New Frequency Distribution 51

3.6 Converting Text to Numbers 52

3.7 Converting Continuous Data to Categories 53

3.8 Combining Variables 54

3.9 Generating Groups 54

3.10 Preparing Unstructured Data 55

Exercises 57

Further Reading 57

4 Understanding Relationships 59

4.1 Overview 59

4.2 Visualizing Relationships Between Variables 60

4.3 Calculating Metrics About Relationships 69

Exercises 81

Further Reading 82

5 Identifying and Understanding Groups 83

5.1 Overview 83

5.2 Clustering 88

5.3 Association Rules 111

5.4 Learning Decision Trees from Data 122

Exercises 137

Further Reading 140

6 Building Models From Data 141

6.1 Overview 141

6.2 Linear Regression 149

6.3 Logistic Regression 161

6.4 k-Nearest Neighbors 167

6.5 Classification and Regression Trees 172

6.6 Other Approaches 178

Exercises 179

Further Reading 182

Appendix A Answers to Exercises 185

Appendix B Hands-on Tutorials 191

B. 1 Tutorial Overview 191

B. 2 Access and Installation 191

B. 3 Software Overview 192

B. 4 Reading in Data 193

B. 5 Preparation Tools 195

B. 6 Tables and Graph Tools 199

B. 7 Statistics Tools 202

B. 8 Grouping Tools 204

B. 9 Models Tools 207

B. 10 Apply Model 211

B. 11 Exercises 211

Bibliography 227

Index 231

Erscheint lt. Verlag 2.7.2014
Sprache englisch
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Mathematik / Informatik Informatik Theorie / Studium
Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Technik
Schlagworte Computer Science • Database & Data Warehousing Technologies • Data Mining • Data Mining Statistics • Datenbanken u. Data Warehousing • Evaluation & Research Methods • Evaluierung u. Researchmethoden • Informatik • Statistics • Statistik
ISBN-10 1-118-42201-5 / 1118422015
ISBN-13 978-1-118-42201-4 / 9781118422014
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 13,8 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Datenschutz und Sicherheit in Daten- und KI-Projekten

von Katharine Jarmul

eBook Download (2024)
O'Reilly Verlag
24,99