Statistical Tolerance Regions (eBook)

Theory, Applications, and Computation
eBook Download: PDF
2009 | 1. Auflage
496 Seiten
John Wiley & Sons (Verlag)
978-0-470-47389-4 (ISBN)

Lese- und Medienproben

Statistical Tolerance Regions - Kalimuthu Krishnamoorthy, Thomas Mathew
Systemvoraussetzungen
135,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
A modern and comprehensive treatment of tolerance intervals and
regions

The topic of tolerance intervals and tolerance regions has
undergone significant growth during recent years, with applications
arising in various areas such as quality control, industry, and
environmental monitoring. Statistical Tolerance Regions
presents the theoretical development of tolerance intervals and
tolerance regions through computational algorithms and the
illustration of numerous practical uses and examples. This is the
first book of its kind to successfully balance theory and practice,
providing a state-of-the-art treatment on tolerance intervals and
tolerance regions.

The book begins with the key definitions, concepts, and
technical results that are essential for deriving tolerance
intervals and tolerance regions. Subsequent chapters provide
in-depth coverage of key topics including:

* Univariate normal distribution

* Non-normal distributions

* Univariate linear regression models

* Nonparametric tolerance intervals

* The one-way random model with balanced data

* The multivariate normal distribution

* The one-way random model with unbalanced data

* The multivariate linear regression model

* General mixed models

* Bayesian tolerance intervals

A final chapter contains coverage of miscellaneous topics
including tolerance limits for a ratio of normal random variables,
sample size determination, reference limits and coverage intervals,
tolerance intervals for binomial and Poisson distributions, and
tolerance intervals based on censored samples. Theoretical
explanations are accompanied by computational algorithms that can
be easily replicated by readers, and each chapter contains exercise
sets for reinforcement of the presented material. Detailed
appendices provide additional data sets and extensive tables of
univariate and multivariate tolerance factors.

Statistical Tolerance Regions is an ideal book for
courses on tolerance intervals at the graduate level. It is also a
valuable reference and resource for applied statisticians,
researchers, and practitioners in industry and pharmaceutical
companies.

K. Krishnamoorthy, PhD, is Professor in the Department of Mathematics at the University of Louisiana at Lafayette. He is Associate Editor of Communications in Statistics and has published numerous journal articles in his areas of research interest, which include tolerance regions, multivariate analysis, and statistical computing. Thomas Mathew, PhD, is Professor in the Department of Mathematics and Statistics at the University of Maryland, Baltimore County. He currently focuses his research on tolerance regions, inference in linear mixed and random models, and bioequivalence testing. A Fellow of the Institute of Mathematical Statistics and the American Statistical Association, Dr. Mathew is the coauthor of Statistical Tests for Mixed Linear Models, also published by Wiley.

List of Tables.

Preface.

1 Preliminaries.

1.1 Introduction.

1.2 Some Technical Results.

1.3 The Modified Large Sample (MLS) Procedure.

1.4 The Generalized P-value and Generalized Confidence Interval.

1.5 Exercises.

2 Univariate Normal Distribution.

2.1 Introduction.

2.2 One-Sided Tolerance Limits for a Normal Population.

2.3 Two-Sided Tolerance Intervals.

2.4 Tolerance Limits for X1 - X2.

2.5 Simultaneous Tolerance Limits for Normal Populations.

2.6 Exercises.

3 Univariate Linear Regression Model.

3.1 Notations and Preliminaries.

3.2 One-Sided Tolerance Intervals and Simultaneous Tolerance Intervals.

3.3 Two-sided Tolerance Intervals and Simultaneous Tolerance Intervals.

3.4 The Calibration Problem.

3.5 Exercises.

4 The One-Way Random Model with Balanced Data.

4.1 Notations and Preliminaries.

4.2 Two Examples.

4.3 One-Sided Tolerance Limits for N(µ, sigma²tau + sigma²taue).

4.4 One-Sided Tolerance Limits for N(µ, sigma²tau¨).

4.5 Two-Sided Tolerance Intervals for N(µ, sigma²tau + sigma²taue).

4.6 Two-Sided Tolerance Intervals for N(µ, sigma²tau¨).

4.7 Exercises.

5 The One-Way Random Model with Unbalanced Data.

5.1 Notations and Preliminaries.

5.2 Two Examples.

5.3 One-Sided Tolerance Limits for N(µ, sigma²tau + sigma²e).

5.4 One-Sided Tolerance Limits for N(µ, sigma²tau).

5.5 Two-Sided Tolerance Intervals.

5.6 Exercises.

6 Some General Mixed Models.

6.1 Notations and Preliminaries.

6.2 Some Examples.

6.3 Tolerance Intervals in a General Setting.

6.4 A General Model with Two Variance Components.

6.5 A One-Way Random Model with Covariates and Unequal Variances.

6.5 Testing Individual Bioequivalence.

6.6 Exercises.

7 Some Non-Normal Distributions.

7.1 Introduction.

7.2 Lognormal Distribution.

7.3 Gamma Distribution.

7.4 Two-Parameter Exponential Distribution.

7.5 Weibull Distribution.

7.6 Exercises.

8 Nonparametric Tolerance Intervals.

8.1 Notations and Preliminaries.

8.2 Order Statistics and Their Distributions.

8.3 One-Sided Tolerance Limits and Exceedance Probabilities.

8.4 Tolerance Intervals.

8.5 Confidence Intervals for Population Quantiles.

8.6 Sample Size Calculation.

8.7 Nonparametric Multivariate Tolerance Regions.

8.8 Exercises.

9 The Multivariate Normal Distribution.

9.1 Introduction.

9.2 Notations and Preliminaries.

9.3 Some Approximate Tolerance Factors.

9.4 Methods Based on Monte Carlo Simulation.

9.5 Simultaneous Tolerance Intervals.

9.6 Tolerance Regions for Some Special Cases.

9.7 Exercises.

10 The Multivariate Linear Regression Model.

10.1 Preliminaries.

10.2 Approximations for the Tolerance Factor.

10.3 Accuracy of the Approximate Tolerance Factors.

10.4 Methods Based on Monte Carlo Simulation.

10.5 Application to the Example.

10.6 Multivariate Calibration.

10.7 Exercises.

11 Bayesian Tolerance Intervals.

11.1 Notations and Preliminaries.

11.2 The Univariate Normal Distribution.

11.3 The One-Way Random Model With Balanced Data.

11.4 Two Examples.

11.5 Exercises.

12 Miscellaneous Topics.

12.1 Introduction.

12.2 beta-Expectation Tolerance Regions.

12.3 Tolerance Limits for a Ratio of Normal Random Variables.

12.4 Sample Size Determination.

12.5 Reference Limits and Coverage Intervals.

12.6 Tolerance Intervals for Binomial and Poisson Distributions.

12.7 Tolerance Intervals Based on Censored Samples.

12.8 Exercises.

Appendix A: Data Sets.

Appendix B: Tables.

References.

Index.

Erscheint lt. Verlag 8.5.2009
Reihe/Serie Wiley Series in Probability and Statistics
Wiley Series in Probability and Statistics
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Technik
Schlagworte Angew. Wahrscheinlichkeitsrechn. u. Statistik / Modelle • Applied Probability & Statistics - Models • Arbeitssicherheit u. Umweltschutz i. d. Chemie • Chemical and Environmental Health and Safety • Chemie • Chemistry • Industrial Engineering • Industrial Engineering / Quality Control • Industrielle Verfahrenstechnik • Qualitätssicherung i. d. Industriellen Verfahrenstechnik • Qualitätssicherung i. d. Industriellen Verfahrenstechnik • Statistics • Statistik
ISBN-10 0-470-47389-4 / 0470473894
ISBN-13 978-0-470-47389-4 / 9780470473894
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 21,3 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich