Cluster Analysis (eBook)

eBook Download: PDF
2010 | 5. Auflage
352 Seiten
John Wiley & Sons (Verlag)
978-0-470-97780-4 (ISBN)

Lese- und Medienproben

Cluster Analysis - Brian S. Everitt, Sabine Landau, Morven Leese, Daniel Stahl
Systemvoraussetzungen
65,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Cluster analysis comprises a range of methods for classifying multivariate data into subgroups. By organizing multivariate data into such subgroups, clustering can help reveal the characteristics of any structure or patterns present. These techniques have proven useful in a wide range of areas such as medicine, psychology, market research and bioinformatics.

This fifth edition of the highly successful Cluster Analysis includes coverage of the latest developments in the field and a new chapter dealing with finite mixture models for structured data.

Real life examples are used throughout to demonstrate the application of the theory, and figures are used extensively to illustrate graphical techniques. The book is comprehensive yet relatively non-mathematical, focusing on the practical aspects of cluster analysis.

Key Features:

* Presents a comprehensive guide to clustering techniques, with focus on the practical aspects of cluster analysis

* Provides a thorough revision of the fourth edition, including new developments in clustering longitudinal data and examples from bioinformatics and gene studies./li>

* Updates the chapter on mixture models to include recent developments and presents a new chapter on mixture modeling for structured data

Practitioners and researchers working in cluster analysis and data analysis will benefit from this book.

Brian S. Everitt, Head of the Biostatistics and Computing Department and Professor of Behavioural Statistics, Kings College London. He has authored/ co-authored over 50 books on statistics and approximately 100 papers and other articles, and is also joint editor of Statistical Methods in Medical Research. Dr Sabine Landau, Head of Department of Biostatistics, Institute of Psychiatry, Kings College London. Dr Morven Leese, Health Service and Population Research, Institute of Psychiatry, Kings College London. Dr Daniel Stahl, Deptartment of Biostatistics & Computing, Institute of Psychiatry, Kings College London.

Preface
Acknowledgement

1 An introduction to classification and clustering
1.1 Introduction
1.2 Reasons for classifying
1.3 Numerical methods of classification - cluster analysis
1.4 What is a cluster?
1.5 Examples of the use of clustering
1.6 Summary

2 Detecting clusters graphically
2.1 Introduction
2.2 Detecting clusters with univariate and bivariate plots of data
2.3 Using lower-dimensional projections of multivariate data for graphical representations
2.4 Three-dimensional plots and trellis graphics
2.5 Summary

3Measurement of proximity
3.1 Introduction
3.2 Similarity measures for categorical data
3.3 Dissimilarity and distance measures for continuous data
3.4 Similarity measures for data containing both continuous and categorical variables
3.5 Proximity measures for structured data
3.6 Inter-group proximity measures
3.7 Weighting variables
3.8 Standardization
3.9 Choice of proximity measure
3.10 Summary

4Hierarchical clustering
4.1 Introduction
4.2 Agglomerative methods
4.3 Divisive methods
4.4 Applying the hierarchical clustering process
4.5 Applications of hierarchical methods
4.6 Summary

5Optimization clustering techniques
5.1 Introduction
5.2 Clustering criteria derived from the dissimilarity matrix
5.3 Clustering criteria derived from continuous data
5.4 Optimization algorithms
5.5 Choosing the number of clusters
5.6 Applications of optimization methods
5.7 Summary

6Finite mixture densities as models for cluster analysis
6.1 Introduction
6.2 Finite mixture densities
6.3 Other finite mixture densities
6.4 Bayesian analysis of mixtures
6.5 Inference for mixture models with unknown number of components and model structure
6.6 Dimension reduction - variable selection in finite mixture modelling
6.7 Finite regression mixtures
6.8 Software for finite mixture modelling
6.9 Some examples of the application of finite mixture densities
6.10 Summary

7Model-based cluster analysis for structured data
7.1 Introduction
7.2 Finite mixture models for structured data
7.3 Finite mixtures of factor models
7.4 Finite mixtures of longitudinal models
7.5 Applications of finite mixture models for structured data
7.6 Summary

8Miscellaneous clustering methods
8.1 Introduction
8.2 Density search clustering techniques
8.3 Density-based spatial clustering of applications with noise
8.4 Techniques which allow overlapping clusters
8.5 Simultaneous clustering of objects and variables
8.6 Clustering with constraints
8.7 Fuzzy clustering
8.8 Clustering and artificial neural networks
8.9 Summary

9Some final comments and guidelines
9.1 Introduction
9.2 Using clustering techniques in practice
9.3 Testing for absence of structure
9.4 Methods for comparing cluster solutions
9.5 Internal cluster quality, influence and robustness
9.6 Displaying cluster solutions graphically
9.7 Illustrative examples
9.8 Summary

Bibliography

Index

Erscheint lt. Verlag 13.12.2010
Reihe/Serie Wiley Series in Probability and Statistics
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Technik
Schlagworte Data Analysis • Data Mining • Data Mining Statistics • Datenanalyse • Longitudinalanalyse • Longitudinal Analysis • Statistics • Statistik
ISBN-10 0-470-97780-9 / 0470977809
ISBN-13 978-0-470-97780-4 / 9780470977804
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 4,4 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich