Statistical Inference for Fractional Diffusion Processes (eBook)
280 Seiten
John Wiley & Sons (Verlag)
978-0-470-66713-2 (ISBN)
social, physical, engineering and life sciences as well as in
financial economics. In model building, statistical inference for
stochastic processes is of great importance from both a theoretical
and an applications point of view.
This book deals with Fractional Diffusion Processes and
statistical inference for such stochastic processes. The main focus
of the book is to consider parametric and nonparametric inference
problems for fractional diffusion processes when a complete path of
the process over a finite interval is observable.
Key features:
* Introduces self-similar processes, fractional Brownian motion
and stochastic integration with respect to fractional Brownian
motion.
* Provides a comprehensive review of statistical inference for
processes driven by fractional Brownian motion for modelling long
range dependence.
* Presents a study of parametric and nonparametric inference
problems for the fractional diffusion process.
* Discusses the fractional Brownian sheet and infinite
dimensional fractional Brownian motion.
* Includes recent results and developments in the area of
statistical inference of fractional diffusion processes.
Researchers and students working on the statistics of fractional
diffusion processes and applied mathematicians and statisticians
involved in stochastic process modelling will benefit from this
book.
B.L.S. Prakasa Rao, Department of Mathematics and Statistics, University of Hyderabad, India. Professor Rao is one of the world's foremost researchers in this complex area of probability theory.
Preface
1 Fractional Brownian Motion and Related Processes
1.1 Introduction
1.2 Self-similar processes
1.3 Fractional Brownian motion
1.4 Stochastic differential equations driven by fBm
1.5 Fractional Ornstein-Uhlenbeck type process
1.6 Mixed fractional Brownian motion
1.7 Donsker type approximation for fBm with Hurst index H >
12
1.8 Simulation of fractional Brownian motion
1.9 Remarks on application of modelling by fBm in mathematical
finance
1.10 Path wise integration with respect to fBm
2 Parametric Estimation for Fractional Diffusion
Processes
2.1 Introduction
2.2 Stochastic differential equations and local asymptotic
normality
2.3 Parameter estimation for linear SDE
2.4 Maximum likelihood estimation
2.5 Bayes estimation
2.6 Berry-Esseen type bound for MLE
2.7 _-upper and lower functions for MLE
2.8 Instrumental variable estimation
3 Parametric Estimation for Fractional Ornstein-Uhlenbeck
Type Process
3.1 Introduction
3.2 Preliminaries
3.3 Maximum likelihood estimation
3.4 Bayes estimation
3.5 Probabilities of large deviations of MLE and BE
3.6 Minimum L1-norm estimation
4 Sequential Inference for Some Processes Driven by
Fractional Brownian
Motion
4.1 Introduction
4.2 Sequential maximum likelihood estimation
4.3 Sequential testing for simple hypothesis
5 Nonparametric Inference for Processes Driven by Fractional
Brownian
Motion
5.1 Introduction
5.2 Identification for linear stochastic systems
5.3 Nonparametric estimation of trend
6 Parametric Inference for Some SDE's Driven by
Processes Related to
FBM
6.1 Introduction
6.2 Estimation of the the translation of a process driven by a
fBm
6.3 Parametric inference for SDE with delay governed by a
fBm
6.4 Parametric estimation for linear system of SDE driven by
fBm's with different
Hurst indices
6.5 Parametric estimation for SDE driven by mixed fBm
6.6 Alternate approach for estimation in models driven by
fBm
6.7 Maximum likelihood estimation under misspecified model
7 Parametric Estimation for Processes Driven by Fractional
Brownian Sheet
7.1 Introduction
7.2 Parametric estimation for linear SDE driven by a fractional
Brownian sheet
8 Parametric Estimation for Processes Driven by Infinite
Dimensional Fractional
Brownian Motion
8.1 Introduction
8.2 Parametric estimation for SPDE driven by infinite
dimensional fBm
8.3 Parametric estimation for stochastic parabolic equations
driven by infinite
dimensional fBm
9 Estimation of Self-Similarity Index
9.1 Introduction
9.2 Estimation of the Hurst index H when H is a constant and 12
< H < 1 for fBm
9.3 Estimation of scaling exponent function H(.) for locally
self-similar processes
10 Filtering and Prediction for Linear Systems Driven by
Fractional Brownian
Motion
10.1 Introduction
10.2 Prediction of fractional Brownian motion
10.3 Filtering in a simple linear system driven by a fBm
10.4 General approach for filtering for linear systems driven by
fBm
References
Index
"Provides a comprehensive review of statistical inference for
processes driven by fractional Brownian motion for modeling long
range dependence." (Bulletin Bibliographique, 2011)
Erscheint lt. Verlag | 21.5.2010 |
---|---|
Reihe/Serie | Wiley Series in Probability and Statistics | Wiley Series in Probability and Statistics |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Statistik |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
Technik | |
Schlagworte | Angew. Wahrscheinlichkeitsrechn. u. Statistik / Modelle • Applied Probability & Statistics - Models • Probability & Mathematical Statistics • Statistics • Statistik • Wahrscheinlichkeitsrechnung u. mathematische Statistik |
ISBN-10 | 0-470-66713-3 / 0470667133 |
ISBN-13 | 978-0-470-66713-2 / 9780470667132 |
Haben Sie eine Frage zum Produkt? |
Größe: 1,2 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich