Bayesian Statistical Modelling (eBook)
596 Seiten
John Wiley & Sons (Verlag)
978-0-470-03593-1 (ISBN)
Following the success of the first edition, this reworked and updated book provides an accessible approach to Bayesian computing and analysis, with an emphasis on the principles of prior selection, identification and the interpretation of real data sets.
The second edition:
* Provides an integrated presentation of theory, examples, applications and computer algorithms.
* Discusses the role of Markov Chain Monte Carlo methods in computing and estimation.
* Includes a wide range of interdisciplinary applications, and a large selection of worked examples from the health and social sciences.
* Features a comprehensive range of methodologies and modelling techniques, and examines model fitting in practice using Bayesian principles.
* Provides exercises designed to help reinforce the reader's knowledge and a supplementary website containing data sets and relevant programs.
Bayesian Statistical Modelling is ideal for researchers in applied statistics, medical science, public health and the social sciences, who will benefit greatly from the examples and applications featured. The book will also appeal to graduate students of applied statistics, data analysis and Bayesian methods, and will provide a great source of reference for both researchers and students.
Praise for the First Edition:
"It is a remarkable achievement to have carried out such a range of analysis on such a range of data sets. I found this book comprehensive and stimulating, and was thoroughly impressed with both the depth and the range of the discussions it contains."
--ISI - Short Book Reviews
"This is an excellent introductory book on Bayesian modelling techniques and data analysis."
--Biometrics
"The book fills an important niche in the statistical literature and should be a very valuable resource for students and professionals who are utilizing Bayesian methods."
--Journal of Mathematical Psychology
Peter Congdon is Research Professor of Quantitative Geography and Health Statistics at Queen Mary University of London. He has written three earlier books on Bayesian modelling and data analysis techniques with Wiley, and has a wide range of publications in statistical methodology and in application areas. His current interests include applications to spatial and survey data relating to health status and health service research. His recent publications include work associated with the British Historical GIS Project (University of Portsmouth) and international collaborative work on psychiatric admissions in London and New York.
Preface.
Chapter 1 Introduction: The Bayesian Method, its Benefits and
Implementation.
Chapter 2 Bayesian Model Choice, Comparison and
Checking.
Chapter 3 The Major Densities and their Application.
Chapter 4 Normal Linear Regression, General Linear Models and
Log-Linear Models.
Chapter 5 Hierarchical Priors for Pooling Strength and
Overdispersed Regression Modelling.
Chapter 6 Discrete Mixture Priors.
Chapter 7 Multinomial and Ordinal Regression Models.
Chapter 8 Time Series Models.
Chapter 9 Modelling Spatial Dependencies.
Chapter 10 Nonlinear and Nonparametric Regression.
Chapter 11 Multilevel and Panel Data Models.
Chapter 12 Latent Variable and Structural Equation Models for
Multivariate Data.
Chapter 13 Survival and Event History Analysis.
Chapter 14 Missing Data Models.
Chapter 15 Measurement Error, Seemingly Unrelated
Regressions, and Simultaneous Equations.
Appendix 1 A Brief Guide to Using WINBUGS.
Index.
"This text is ideal for researchers in applied statistics, medical
sciences, public health and the social sciences, who will benefit
greatly from the examples and applications featured. The book will
also appeal to graduate students of applied statistics, data
analysis and Bayesian methods, and will provide a great source of
reference for both researchers and students." (Zentralblatt
MATH, 2010)
Erscheint lt. Verlag | 4.4.2007 |
---|---|
Reihe/Serie | Wiley Series in Probability and Statistics | Wiley Series in Probability and Statistics |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Statistik |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
Technik | |
Schlagworte | Bayesian analysis • Bayessches Verfahren • Bayes-Verfahren • Statistics • Statistik |
ISBN-10 | 0-470-03593-5 / 0470035935 |
ISBN-13 | 978-0-470-03593-1 / 9780470035931 |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |

Größe: 6,5 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich