Statistical Inference for Fractional Diffusion Processes (eBook)

eBook Download: EPUB
2011 | 1. Auflage
280 Seiten
Wiley (Verlag)
978-0-470-97576-3 (ISBN)

Lese- und Medienproben

Statistical Inference for Fractional Diffusion Processes -  B. L. S. Prakasa Rao
Systemvoraussetzungen
92,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Stochastic processes are widely used for model building in the social, physical, engineering and life sciences as well as in financial economics. In model building, statistical inference for stochastic processes is of great importance from both a theoretical and an applications point of view. This book deals with Fractional Diffusion Processes and statistical inference for such stochastic processes. The main focus of the book is to consider parametric and nonparametric inference problems for fractional diffusion processes when a complete path of the process over a finite interval is observable. Key features: Introduces self-similar processes, fractional Brownian motion and stochastic integration with respect to fractional Brownian motion. Provides a comprehensive review of statistical inference for processes driven by fractional Brownian motion for modelling long range dependence. Presents a study of parametric and nonparametric inference problems for the fractional diffusion process. Discusses the fractional Brownian sheet and infinite dimensional fractional Brownian motion. Includes recent results and developments in the area of statistical inference of fractional diffusion processes. Researchers and students working on the statistics of fractional diffusion processes and applied mathematicians and statisticians involved in stochastic process modelling will benefit from this book.

B.L.S. Prakasa Rao, Department of Mathematics and Statistics, University of Hyderabad, India. Professor Rao is one of the world's foremost researchers in this complex area of probability theory.

Preface

1 Fractional Brownian Motion and Related Processes

1.1 Introduction

1.2 Self-similar processes

1.3 Fractional Brownian motion

1.4 Stochastic differential equations driven by fBm

1.5 Fractional Ornstein-Uhlenbeck type process

1.6 Mixed fractional Brownian motion

1.7 Donsker type approximation for fBm with Hurst index H >
12

1.8 Simulation of fractional Brownian motion

1.9 Remarks on application of modelling by fBm in mathematical
finance

1.10 Path wise integration with respect to fBm

2 Parametric Estimation for Fractional Diffusion
Processes

2.1 Introduction

2.2 Stochastic differential equations and local asymptotic
normality

2.3 Parameter estimation for linear SDE

2.4 Maximum likelihood estimation

2.5 Bayes estimation

2.6 Berry-Esseen type bound for MLE

2.7 _-upper and lower functions for MLE

2.8 Instrumental variable estimation

3 Parametric Estimation for Fractional Ornstein-Uhlenbeck
Type Process

3.1 Introduction

3.2 Preliminaries

3.3 Maximum likelihood estimation

3.4 Bayes estimation

3.5 Probabilities of large deviations of MLE and BE

3.6 Minimum L1-norm estimation

4 Sequential Inference for Some Processes Driven by
Fractional Brownian

Motion

4.1 Introduction

4.2 Sequential maximum likelihood estimation

4.3 Sequential testing for simple hypothesis

5 Nonparametric Inference for Processes Driven by Fractional
Brownian

Motion

5.1 Introduction

5.2 Identification for linear stochastic systems

5.3 Nonparametric estimation of trend

6 Parametric Inference for Some SDE's Driven by
Processes Related to

FBM

6.1 Introduction

6.2 Estimation of the the translation of a process driven by a
fBm

6.3 Parametric inference for SDE with delay governed by a
fBm

6.4 Parametric estimation for linear system of SDE driven by
fBm's with different

Hurst indices

6.5 Parametric estimation for SDE driven by mixed fBm

6.6 Alternate approach for estimation in models driven by
fBm

6.7 Maximum likelihood estimation under misspecified model

7 Parametric Estimation for Processes Driven by Fractional
Brownian Sheet

7.1 Introduction

7.2 Parametric estimation for linear SDE driven by a fractional
Brownian sheet

8 Parametric Estimation for Processes Driven by Infinite
Dimensional Fractional

Brownian Motion

8.1 Introduction

8.2 Parametric estimation for SPDE driven by infinite
dimensional fBm

8.3 Parametric estimation for stochastic parabolic equations
driven by infinite

dimensional fBm

9 Estimation of Self-Similarity Index

9.1 Introduction

9.2 Estimation of the Hurst index H when H is a constant and 12
< H < 1 for fBm

9.3 Estimation of scaling exponent function H(.) for locally
self-similar processes

10 Filtering and Prediction for Linear Systems Driven by
Fractional Brownian

Motion

10.1 Introduction

10.2 Prediction of fractional Brownian motion

10.3 Filtering in a simple linear system driven by a fBm

10.4 General approach for filtering for linear systems driven by
fBm

References

Index

"Provides a comprehensive review of statistical inference for
processes driven by fractional Brownian motion for modeling long
range dependence." (Bulletin Bibliographique, 2011)

Erscheint lt. Verlag 5.7.2011
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Technik
Schlagworte Angewandte Wahrscheinlichkeitsrechnung u. Statistik • Angew. Wahrscheinlichkeitsrechn. u. Statistik / Modelle • Applied Probability & Statistics • Applied Probability & Statistics - Models • Probability & Mathematical Statistics • Statistics • Statistik • Wahrscheinlichkeitsrechnung u. mathematische Statistik
ISBN-10 0-470-97576-8 / 0470975768
ISBN-13 978-0-470-97576-3 / 9780470975763
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)
Größe: 1,9 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich