Option Prices as Probabilities (eBook)

A New Look at Generalized Black-Scholes Formulae
eBook Download: PDF
2010 | 2010
XXI, 270 Seiten
Springer Berlin (Verlag)
978-3-642-10395-7 (ISBN)

Lese- und Medienproben

Option Prices as Probabilities - Christophe Profeta, Bernard Roynette, Marc Yor
Systemvoraussetzungen
53,49 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Discovered in the seventies, Black-Scholes formula continues to play a central role in Mathematical Finance. We recall this formula. Let (B ,t? 0; F ,t? 0, P) - t t note a standard Brownian motion with B = 0, (F ,t? 0) being its natural ?ltra- 0 t t tion. Let E := exp B? ,t? 0 denote the exponential martingale associated t t 2 to (B ,t? 0). This martingale, also called geometric Brownian motion, is a model t to describe the evolution of prices of a risky asset. Let, for every K? 0: + ? (t) :=E (K?E ) (0.1) K t and + C (t) :=E (E?K) (0.2) K t denote respectively the price of a European put, resp. of a European call, associated with this martingale. Let N be the cumulative distribution function of a reduced Gaussian variable: x 2 y 1 ? 2 ? N (x) := e dy. (0.3) 2? ?? The celebrated Black-Scholes formula gives an explicit expression of? (t) and K C (t) in terms ofN : K ? ? log(K) t log(K) t ? (t)= KN ? + ?N ? ? (0.4) K t 2 t 2 and ? ?

Reading the Black-Scholes Formula in Terms of First and Last Passage Times.- Generalized Black-Scholes Formulae for Martingales, in Terms of Last Passage Times.- Representation of some particular Azéma supermartingales.- An Interesting Family of Black-Scholes Perpetuities.- Study of Last Passage Times up to a Finite Horizon.- Put Option as Joint Distribution Function in Strike and Maturity.- Existence and Properties of Pseudo-Inverses for Bessel and Related Processes.- Existence of Pseudo-Inverses for Diffusions.

Erscheint lt. Verlag 26.1.2010
Reihe/Serie Springer Finance
Springer Finance
Springer Finance Lecture Notes
Springer Finance Lecture Notes
Zusatzinfo XXI, 270 p. 3 illus.
Verlagsort Berlin
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Technik
Schlagworte 60G44, 60J65, 60H99, 60J60 • Azéma supermartingale • Black-Scholes • Black-Scholes Formulae • Finite Horizon • Last passages times • Martingale • Pseudo-inverses • Quantitative Finance
ISBN-10 3-642-10395-2 / 3642103952
ISBN-13 978-3-642-10395-7 / 9783642103957
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 3,0 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich