Grouping Multidimensional Data (eBook)

Recent Advances in Clustering
eBook Download: PDF
2006 | 2006
XII, 268 Seiten
Springer Berlin (Verlag)
978-3-540-28349-2 (ISBN)

Lese- und Medienproben

Grouping Multidimensional Data -
Systemvoraussetzungen
96,29 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Clustering is one of the most fundamental and essential data analysis techniques. Clustering can be used as an independent data mining task to discern intrinsic characteristics of data, or as a preprocessing step with the clustering results then used for classification, correlation analysis, or anomaly detection.

Kogan and his co-editors have put together recent advances in clustering large and high-dimension data. Their volume addresses new topics and methods which are central to modern data analysis, with particular emphasis on linear algebra tools, opimization methods and statistical techniques. The contributions, written by leading researchers from both academia and industry, cover theoretical basics as well as application and evaluation of algorithms, and thus provide an excellent state-of-the-art overview.

The level of detail, the breadth of coverage, and the comprehensive bibliography make this book a perfect fit for researchers and graduate students in data mining and in many other important related application areas.



Jacob Kogan is an Associate Professor in the Department of Mathematics and Statistics at the University of Maryland Baltimore County. Dr. Kogan received his Ph.D. in Mathematics from Weizmann Institute of Science, and has held teaching and research positions at the University of Toronto and Purdue University. His research interests include Text and Data Mining, Optimization, Calculus of Variations, Optimal Control Theory, and Robust Stability of Control Systems. From 2001 he has also been affiliated with the Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County.

Charles Nicholas is currently a Professor of Computer Science and Chair of the Computer Science and Electrical Engineering Department at UMBC, where he has been since 1988. He received his Ph.D. from The Ohio State University in 1988. Dr. Nicholas' research interestsinclude electronic document processing, information retrieval, and software engineering. Dr. Nicholas has served five times as the General Chair of the ACM Conference on Information and Knowledge Management (CIKM), most recently in 2002. He also twice chaired the Workshop on Digital Document Processing, PODP'96 and PODDP'98.

Marc Teboulle is a Professor in the School of Mathematical Sciences, Tel-Aviv University. He received his D.Sc. from the Technion, Israel Institute of Technology in 1985, and has held positions at the Israel Aircraft Industries, Dalhousie University, the University of Maryland, and visiting positions in various academic institutions in France and the USA. His main research interests are in the area of nonlinear optimization: theory , algorithmic analysis and its applications. He is on the editorial board of the journals: Mathematics of Operations Research and the European Series in Applied and Industrial Mathematics, Control, Optimisation and Calculus of Variations. He served as chairman of the Department of Statistics and Operations Research at the School of Mathematical Sciences of Tel-Aviv University during 1999-2002.

Jacob Kogan is an Associate Professor in the Department of Mathematics and Statistics at the University of Maryland Baltimore County. Dr. Kogan received his Ph.D. in Mathematics from Weizmann Institute of Science, and has held teaching and research positions at the University of Toronto and Purdue University. His research interests include Text and Data Mining, Optimization, Calculus of Variations, Optimal Control Theory, and Robust Stability of Control Systems. From 2001 he has also been affiliated with the Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County. Charles Nicholas is currently a Professor of Computer Science and Chair of the Computer Science and Electrical Engineering Department at UMBC, where he has been since 1988. He received his Ph.D. from The Ohio State University in 1988. Dr. Nicholas' research interestsinclude electronic document processing, information retrieval, and software engineering. Dr. Nicholas has served five times as the General Chair of the ACM Conference on Information and Knowledge Management (CIKM), most recently in 2002. He also twice chaired the Workshop on Digital Document Processing, PODP'96 and PODDP'98. Marc Teboulle is a Professor in the School of Mathematical Sciences, Tel-Aviv University. He received his D.Sc. from the Technion, Israel Institute of Technology in 1985, and has held positions at the Israel Aircraft Industries, Dalhousie University, the University of Maryland, and visiting positions in various academic institutions in France and the USA. His main research interests are in the area of nonlinear optimization: theory , algorithmic analysis and its applications. He is on the editorial board of the journals: Mathematics of Operations Research and the European Series in Applied and Industrial Mathematics, Control, Optimisation and Calculus of Variations. He served as chairman of the Department of Statistics and Operations Research at the School of Mathematical Sciences of Tel-Aviv University during 1999-2002.

The Star Clustering Algorithm for Information Organization.- A Survey of Clustering Data Mining Techniques.- Similarity-Based Text Clustering: A Comparative Study.- Clustering Very Large Data Sets with Principal Direction Divisive Partitioning.- Clustering with Entropy-Like k-Means Algorithms.- Sampling Methods for Building Initial Partitions.- TMG: A MATLAB Toolbox for Generating Term-Document Matrices from Text Collections.- Criterion Functions for Clustering on High-Dimensional Data.

Erscheint lt. Verlag 8.2.2006
Zusatzinfo XII, 268 p.
Verlagsort Berlin
Sprache englisch
Themenwelt Mathematik / Informatik Informatik
Mathematik / Informatik Mathematik Statistik
Technik
Schlagworte algorithms • classification • clustering algorithm • Correlation • Data Analysis • Data Clustering • Data Mining • Excel • LA • MATLAB • Text Clustering • Text Mining
ISBN-10 3-540-28349-8 / 3540283498
ISBN-13 978-3-540-28349-2 / 9783540283492
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 4,2 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich