Wetland Systems (eBook)

Storm Water Management Control

(Autor)

eBook Download: PDF
2010 | 2011
XVIII, 235 Seiten
Springer London (Verlag)
978-1-84996-459-3 (ISBN)

Lese- und Medienproben

Wetland Systems - Miklas Scholz
Systemvoraussetzungen
149,79 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Wetland Systems covers broad water and environmental engineering aspects relevant for the drainage and treatment of storm water and wastewater. It provides a descriptive overview of complex 'black box' treatment systems and the general design issues involved. Standard and novel design recommendations for predominantly constructed wetlands and related sustainable drainage systems are given to take into account the interests of professional engineers and environmental scientists. Wetland Systems deals comprehensively with not only the design, operation, maintenance and water quality monitoring of traditional and novel wetland systems, but also covers: • Analysis of asset performance • Modelling of treatment processes • Performances of existing infrastructure • Sustainability and economic issues Solutions to pressing water quality problems associated with constructed treatment wetlands, integrated constructed wetlands, farm constructed wetlands and storm water ponds, and other sustainable biological filtration and treatment technologies linked to public health engineering are explained. Case study topics are diverse: natural wetlands and constructed treatment wetlands; sustainable water management; and specific applications, such as wetlands treating hydrocarbons. The research projects discussed are multi-disciplinary, holistic, experimental and modelling-orientated. Wetland Systems is a useful reference for the design and operation of wetland systems by engineers and scientists working for the water industry, non-governmental organisations, local authorities and governmental bodies. It is also a valuable text for undergraduate and postgraduate students, lecturers and researchers in civil and environmental engineering fields.

Prof. Dr. Miklas Scholz, CWem, CEnv, CSci, CEng, FHEA, FCIWEM, FIEMA, FICE holds a Chair in Civil Engineering at the University of Salford.

He was previously a Senior Lecturer in Civil and Environmental Engineering at The University of Edinburgh. Moreover, he is a Visiting Professor at Nankai University (China), and the Czech University of Life Sciences. Prof. Scholz's international reputation is based on his research in sustainable water management. He has a passion for solving water quality problems associated with integrated constructed wetlands and ponds, sustainable drainage system technology and planning, and biological filtration and sludge management.


Wetland Systems covers broad water and environmental engineering aspects relevant to the drainage and treatment of storm water and wastewater, providing a descriptive overview of complex 'black box' treatment systems and general design issues involved. Standard and novel design recommendations for predominantly constructed wetlands and related sustainable drainage systems are provided to match the interests of professional engineers and environmental scientists. Wetland Systems deals comprehensively not only with the design, operation, maintenance and water quality monitoring of traditional and novel wetland systems, but also with the analysis of asset performance, and modelling of treatment processes and performances of existing infrastructure. Although it focuses predominantly on developed countries, it also discusses developing countries, and the sustainability and economic issues involved.Solutions to pressing water quality problems associated with constructed treatment wetlands, integrated constructed wetlands, farm constructed wetlands and storm water ponds, and other sustainable biological filtration and treatment technologies linked to public health engineering are explained. Case study topics are diverse: wetlands including natural wetlands and constructed treatment wetlands; sustainable water management, including sustainable drainage systems; and specific applications, such as wetlands treating hydrocarbon. The research projects covered are multi-disciplinary, holistic, experimental and modelling-orientated.

Prof. Dr. Miklas Scholz, CWem, CEnv, CSci, CEng, FHEA, FCIWEM, FIEMA, FICE holds a Chair in Civil Engineering at the University of Salford.He was previously a Senior Lecturer in Civil and Environmental Engineering at The University of Edinburgh. Moreover, he is a Visiting Professor at Nankai University (China), and the Czech University of Life Sciences. Prof. Scholz's international reputation is based on his research in sustainable water management. He has a passion for solving water quality problems associated with integrated constructed wetlands and ponds, sustainable drainage system technology and planning, and biological filtration and sludge management.

Preface 6
Acknowledgements 8
About the Author 9
Contents 11
Abbreviations 14
Chapter 1 - Introduction to Wetland Systems 16
1.1 Background 16
1.2 Definitions 18
1.3 Hydrology of Wetlands 18
1.4 Wetland Chemistry 20
1.5 Wetland System Mass Balance 23
1.6 Macrophytes in Wetlands 24
1.7 Physical and Biochemical Parameters 26
1.8 Constructed Treatment Wetlands 27
1.9 Constructed Wetlands Used for Storm Water Treatment 28
References 31
Chapter 2 - Wetland Case Studies 33
2.1 Integrated Constructed Wetlands for Treating Domestic Wastewater 33
2.1.1 Introduction 33
2.1.2 Materials and Methods 35
2.1.2.1 Site Description 35
2.1.2.2 Sampling and Analytical Methods 38
2.1.2.3 Statistical Analyses 40
2.1.3 Results and Discussion 40
2.1.3.1 Water Quality of the ICW System in Glaslough 40
2.1.3.2 Receiving Stream Water Quality 43
2.1.3.3 Groundwater Quality 44
2.1.3.4 Comparison of Nutrient Removal Performances 45
2.1.3.5 Comparison of Nutrient Reduction in Wetland Cells 46
2.1.4 Conclusions and Further Research Needs 50
2.2 Guidelines for Farmyard Runoff Treatment with Wetlands 50
2.2.1 Introduction 50
2.2.2 Farm Constructed Wetlands: Definition and Background 52
2.2.2.1 Introduction 52
2.2.2.2 Effluent Types and Processes 52
2.2.2.3 Functions, Values, and Principles 53
2.2.2.4 Benefits of Farm Constructed Wetlands 54
2.2.2.5 Limitations of Farm Constructed Wetlands 55
2.2.3 Farm Constructed Wetland Site Suitability 55
2.2.3.1 Effluent to Be Treated 55
2.2.3.2 Site Characteristics 56
2.2.3.3 Discharge Options 58
2.2.4 Design Guidelines for Farm Constructed Wetlands 59
2.2.4.1 Background and Water Treatment Requirements 59
2.2.4.2 Runoff Capture and Conveyance 60
2.2.4.3 Hydraulics, Water Balance, and Residence Time 60
2.2.4.4 Wetland Sizing, Inlet, and Outlet 61
2.2.4.5 Landscape Fit, Biodiversity, and Life Span 61
2.2.5 Construction and Planting 62
2.2.5.1 Construction 62
2.2.5.2 Planting 64
2.2.6 Maintenance and Operation 65
2.2.6.1 Pipe Maintenance and Flow Control 65
2.2.6.2 Vegetation and Sediment Maintenance 66
2.2.6.3 Safety, Security, and Maintenance 66
2.2.6.4 Monitoring the Final Effluent and Receiving Watercourses 67
2.2.7 Conclusions 67
2.3 Integrated Constructed Wetland for Treating Farmyard Runoff 68
2.3.1 Introduction 68
2.3.2 Material and Methods 69
2.3.2.1 Site Description 69
2.3.2.2 ICW Design 70
2.3.2.3 Sampling and Analytical Methods 71
2.3.2.4 Statistical Analyses and Limitations 74
2.3.3 Results and Discussion 75
2.3.3.1 Water Quality 75
2.3.3.2 Comparison of Annual Treatment Performances 75
2.3.3.3 Seasonal Performance 76
2.3.3.4 Flows 77
2.3.3.5 Receiving Stream Water Quality 78
2.3.3.6 Groundwater Quality 79
2.3.3.7 Nitrogen Transformations Within the Sediment 80
2.3.3.8 Integrated Constructed Wetland Sizing for Nutrient Reduction 81
2.3.3.9 Overall Catchment Characteristics 81
2.3.3.10 Soft Criteria 86
2.3.4 Conclusions 86
2.4 Integrated Constructed Wetlands for TreatingSwine Wastewater 87
2.4.1 Introduction and Agricultural Practice 87
2.4.2 International Design Guidelines: Global Scenario 88
2.4.2.1 American Guidelines 88
2.4.2.2 Other Guidelines 91
2.4.2.3 Recent Innovations 92
2.4.3 Operations 94
2.4.3.1 Loading and Flow Rates 94
2.4.3.2 Water Depth 95
2.4.3.3 Pretreatment of Wastewater 95
2.4.4 Macrophytes and Rural Biodiversity 97
2.4.4.1 Macrophyte Types and Characteristics 97
2.4.4.2 Toxicity Tolerance Thresholds 98
2.4.5 Nutrients 99
2.4.5.1 Nutrient Transformation Processes 99
2.4.5.2 Phosphorus 101
2.4.6 Pathogens, Odor, and Human Health 102
2.4.7 Conclusions and Further Research Needs 103
2.5 Wetlands to Control Runoff from Wood Storage Sites 103
2.5.1 Introduction and Objectives 103
2.5.2 Pollution Potential of Runoff from Wood Handling Sites 105
2.5.2.1 Reasons for Pollution Generation at Wood Handling Sites 105
2.5.2.2 Characteristics of Runoff 106
2.5.2.3 Effects of Runoff on Receiving Watercourses 108
2.5.3 Treatment Methods 109
2.5.3.1 Overview of Applied Treatment Technologies and Methods 109
2.5.3.2 Soil Infiltration 110
2.5.3.3 Wetland Treatment 111
2.5.3.4 Other Treatment Methods 113
2.5.3.5 Treatments Used for Organic Matter in Pulp and Paper Mill Wastewater 114
2.5.4 Discussion, Conclusions, and Further Research 116
2.5.4.1 Discussion Concerning the Cost-effectivenessof the Treatment Methods 116
2.5.4.2 Summary of Conclusions 117
2.5.4.3 Further Recommended Research 118
2.6 Wetlands for Treating Hydrocarbons 119
2.6.1 Introduction 119
2.6.1.1 Constructed Treatment Wetlands 119
2.6.1.2 Benzene Removal 120
2.6.1.3 Novelty, Aim, and Objectives 122
2.6.2 Materials and Methods 122
2.6.2.1 Experimental System Design and Operation 122
2.6.2.2 Biodegradation and Volatilization Determination 126
2.6.3 Results and Discussion 127
2.6.3.1 Treatment Performance Comparisons 127
2.6.3.2 Impact of Volatilization 127
2.6.4 Conclusions 129
References 129
Chapter 3 - Carbon Storage and Fluxes Within Wetland Systems 141
3.1 Introduction 141
3.1.1 Wetlands and Processes 141
3.1.2 Global Warming 142
3.1.3 Purpose and Review Methodology 143
3.2 Carbon Turnover and Removal Mechanisms 143
3.2.1 Carbon Turnover 143
3.2.2 Carbon Components 144
3.2.3 Carbon Removal Mechanisms 144
3.3 Are Wetlands Carbon Sources or Sinks? 146
3.3.1 Wetlands as Carbon Sources 146
3.3.2 Wetlands as Carbon Sinks 150
3.4 Impact of Global Warming on Wetlands 152
3.5 Conclusions and Further Research Needs 154
References 154
Chapter 4 - Wetlands and Sustainable Drainage 162
4.1 Rapid Assessment Methodology for the Survey of Water Bodies 162
4.1.1 Introduction 162
4.1.1.1 Background 162
4.1.1.2 Rationale for Rapid Survey Method 163
4.1.1.3 Manpower and Equipment Requirements 164
4.1.1.4 Survey Template 165
4.1.1.5 Sustainable Flood Retention Basin Typology 166
4.1.2 How to Use This Guidance Manual 166
4.1.3 Assessment of Classification Variables 167
4.1.3.1 Overview 167
4.1.3.2 Engineered (%) 167
4.1.3.3 Dam Height (m) 168
4.1.3.4 Dam Length (m) 168
4.1.3.5 Outlet Arrangement (%) 168
4.1.3.6 Aquatic Animal Passage (%) 169
4.1.3.7 Land Animal Passage (%) 170
4.1.3.8 Flood Plain Elevation (m) 171
4.1.3.9 Basin Channel Connectivity (m) 171
4.1.3.10 Wetness (%) 172
4.1.3.11 Proportion of Flow Within the Channel (%) 172
4.1.3.12 Mean Flooding Depth (m) 173
4.1.3.13 Typical Wetness Duration (d/a) 173
4.1.3.14 Flood Duration (d/a) 173
4.1.3.15 Basin Bed Gradient (%) 174
4.1.3.16 Mean Basin Flood Velocity (cm/s) 174
4.1.3.17 Wetted Perimeter (m) 174
4.1.3.18 Maximum Flood Water Volume (m^3) 174
4.1.3.19 Flood Water Surface Area (m^2) 175
4.1.3.20 Mean Annual Rainfall (mm) 175
4.1.3.21 Drainage (cm/d) 175
4.1.3.22 Impermeable Soil Proportion (%) 176
4.1.3.23 Seasonal Influence (%) 176
4.1.3.24 Altitude (m) 177
4.1.3.25 Vegetation Cover (%) 177
4.1.3.26 Algal Cover in Summer (%) 177
4.1.3.27 Relative Total Pollution (%) 178
4.1.3.28 Mean Sediment Depth (cm) 179
4.1.3.29 Organic Sediment Proportion (%) 179
4.1.3.30 Flotsam Cover (%) 180
4.1.3.31 Catchment Size (km^2) 181
4.1.3.32 Urban Catchment Proportion (%) 181
4.1.3.33 Arable Catchment Proportion (%) 182
4.1.3.34 Pasture Catchment Proportion (%) 182
4.1.3.35 Viniculture Catchment Proportion (%) 182
4.1.3.36 Forest Catchment Proportion (%) 183
4.1.3.37 Natural Catchment Proportion (%) 183
4.1.3.38 Groundwater Infiltration (%) 183
4.1.3.39 Mean Depth of Basin 184
4.1.3.40 Length of Basin (m) 184
4.1.3.41 Width of Basin (m) 185
4.1.4 Bias and Purpose 185
4.1.4.1 Overview 185
4.1.4.2 Dominant Hydraulic Purpose 185
4.1.4.3 Drinking Water Supply 185
4.1.4.4 Production Industry 186
4.1.4.5 Sustainable Drainage 186
4.1.4.6 Environmental Protection 186
4.1.4.7 Recreational Benefits 187
4.1.4.8 Landscape Aesthetics 187
4.1.5 Presentation of Findings Using Geostatistics 187
4.2 Classification of Sustainable Flood Retention Basin Types 190
4.2.1 Introduction and Objectives 190
4.2.2 Methodology 192
4.2.2.1 Identification of Sites and Definitions 192
4.2.2.2 Identification of Classification Variables 196
4.2.2.3 Rationale for the Elimination of Less Relevant Variables 198
4.2.2.4 Assignment of Sustainable Flood Retention Basin Types with the Help of Cluster Analyses 198
4.2.3 Findings and Discussion 199
4.2.3.1 Reduction Exercise for Classification Variables 199
4.2.3.2 Cluster Analyses 200
4.2.3.3 Groupings Based on Cluster Analysis 200
4.2.3.4 Application of Classification Methodology to Scotland 201
4.2.4 Conclusions 202
4.3 Combined Wetland and Detention Systems 202
4.3.1 Introduction 202
4.3.1.1 Background 202
4.3.1.2 Microbial Contamination 203
4.3.1.3 Modeling Approaches 205
4.3.1.4 Aim and Objectives 205
4.3.2 Methodology 205
4.3.2.1 Experimental System Set-up 205
4.3.2.2 Data Set 207
4.3.2.3 Modeling 207
4.3.2.4 Development of the Artificial Neural Network Model 209
4.3.3 Results and Discussion 211
4.3.3.1 Inflow and Outflow Water Quality 211
4.3.3.2 Multiple Linear Regression Analyses 211
4.3.3.3 Analyses of Variance 212
4.3.3.4 Artificial Neural Network Modeling 212
4.3.4 Conclusions 213
4.4 Integration of Trees into Drainage Planning 214
4.4.1 Introduction 214
4.4.1.1 Background 214
4.4.1.2 Traditional and Sustainable Urban Drainage 216
4.4.1.3 Aim and Objectives 216
4.4.2 Methodology 217
4.4.3 Results and Discussion 218
4.4.3.1 Lack of Tree Integration into Urban Drainage Systems 218
4.4.3.2 Rainfall and Land Use Characteristics 218
4.4.3.3 Rainfall Interception 219
4.4.3.4 Application of the Sustainable Urban Drainage System Decision Support Model 220
4.4.3.5 Design Recommendations 222
4.4.4 Conclusions 224
References 225
Chapter 5 - Modeling Complex Wetland Systems 230
5.1 Introduction 230
5.2 Methodology and Software 232
5.2.1 Case Study Sites 232
5.2.2 Data and Variables 233
5.2.3 Statistical Analyses 233
5.2.4 Self-organizing Map 234
5.3 Results and Discussion 236
5.3.1 Overall Performance 236
5.3.2 Model Application to Assess Nutrient Removal 237
5.3.3 Nitrogen and Phosphorus Predictions 240
5.4 Conclusions 242
References 243
Index 245

Erscheint lt. Verlag 1.11.2010
Reihe/Serie Green Energy and Technology
Green Energy and Technology
Zusatzinfo XVIII, 235 p.
Verlagsort London
Sprache englisch
Themenwelt Sachbuch/Ratgeber Natur / Technik Natur / Ökologie
Naturwissenschaften Biologie Genetik / Molekularbiologie
Naturwissenschaften Geowissenschaften Meteorologie / Klimatologie
Technik Umwelttechnik / Biotechnologie
Wirtschaft Betriebswirtschaft / Management
Schlagworte CP8059 • Sustainable Drainage • Water Control • water industry and water technology • Water Management • water quality • Water Quality and Water Pollution • Wetland Systems
ISBN-10 1-84996-459-9 / 1849964599
ISBN-13 978-1-84996-459-3 / 9781849964593
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 7,4 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
"Klimaschutz zerstört die Wirtschaft!", und andere Stammtischparolen …

von Jan Hegenberg

eBook Download (2024)
Komplett-Media Verlag
20,99
Eine Reise durch die ausgestorbenen Ökosysteme der Erdgeschichte

von Thomas Halliday

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
16,99