Data Mining with R - Luis Torgo

Data Mining with R

Learning with Case Studies

(Autor)

Buch | Hardcover
305 Seiten
2010
Taylor & Francis Inc (Verlag)
978-1-4398-1018-7 (ISBN)
87,25 inkl. MwSt
zur Neuauflage
  • Titel erscheint in neuer Auflage
  • Artikel merken
Zu diesem Artikel existiert eine Nachauflage
Provides a self-contained introduction to the use of R for exploratory data mining and machine learning. Employing a practical, learn-by-doing approach, this work presents a series of representative case studies from ecology, financial prediction, fraud detection, and bioinformatics, including all of the necessary steps, code, and data.
The versatile capabilities and large set of add-on packages make R an excellent alternative to many existing and often expensive data mining tools. Exploring this area from the perspective of a practitioner, Data Mining with R: Learning with Case Studies uses practical examples to illustrate the power of R and data mining.





Assuming no prior knowledge of R or data mining/statistical techniques, the book covers a diverse set of problems that pose different challenges in terms of size, type of data, goals of analysis, and analytical tools. To present the main data mining processes and techniques, the author takes a hands-on approach that utilizes a series of detailed, real-world case studies:








Predicting algae blooms
Predicting stock market returns
Detecting fraudulent transactions
Classifying microarray samples


With these case studies, the author supplies all necessary steps, code, and data.


Web Resource
A supporting website mirrors the do-it-yourself approach of the text. It offers a collection of freely available R source files that encompass all the code used in the case studies. The site also provides the data sets from the case studies as well as an R package of several functions.

Luis Torgo is an associate professor in the Department of Computer Science at the University of Porto in Portugal. An active researcher in machine learning and data mining for more than 20 years, Dr. Torgo is also a researcher in the Laboratory of Artificial Intelligence and Data Analysis (LIAAD) of INESC Porto LA.

Introduction
How to Read This Book
A Short Introduction to R
A Short Introduction to MySQL





Predicting Algae Blooms
Problem Description and Objectives
Data Description
Loading the Data into R
Data Visualization and Summarization
Unknown Values
Obtaining Prediction Models
Model Evaluation and Selection
Predictions for the 7 Algae





Predicting Stock Market Returns
Problem Description and Objectives
The Available Data
Defining the Prediction Tasks
The Prediction Models
From Predictions into Actions
Model Evaluation and Selection
The Trading System





Detecting Fraudulent Transactions
Problem Description and Objectives
The Available Data
Defining the Data Mining Tasks
Obtaining Outlier Rankings





Classifying Microarray Samples
Problem Description and Objectives
The Available Data
Gene (Feature) Selection
Predicting Cytogenetic Abnormalities


Bibliography


Index


Index of Data Mining Topics


Index of R Functions

Erscheint lt. Verlag 19.11.2010
Reihe/Serie Chapman & Hall/CRC Data Mining and Knowledge Discovery Series
Zusatzinfo 26; 42 Illustrations, black and white
Verlagsort Washington
Sprache englisch
Maße 156 x 235 mm
Gewicht 567 g
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Mathematik / Informatik Mathematik
Technik Elektrotechnik / Energietechnik
ISBN-10 1-4398-1018-4 / 1439810184
ISBN-13 978-1-4398-1018-7 / 9781439810187
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Datenanalyse für Künstliche Intelligenz

von Jürgen Cleve; Uwe Lämmel

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
74,95
Daten importieren, bereinigen, umformen und visualisieren

von Hadley Wickham; Mine Çetinkaya-Rundel …

Buch | Softcover (2024)
O'Reilly (Verlag)
54,90