Survival Analysis with Correlated Endpoints - Takeshi Emura, Shigeyuki Matsui, Virginie Rondeau

Survival Analysis with Correlated Endpoints (eBook)

Joint Frailty-Copula Models
eBook Download: PDF | EPUB
2019 | 1st ed. 2019
XVII, 118 Seiten
Springer Singapore (Verlag)
978-981-13-3516-7 (ISBN)
64,19 € inkl. MwSt
Systemvoraussetzungen
69,42 € inkl. MwSt
Systemvoraussetzungen
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book introduces readers to advanced statistical methods for analyzing survival data involving correlated endpoints. In particular, it describes statistical methods for applying Cox regression to two correlated endpoints by accounting for dependence between the endpoints with the aid of copulas. The practical advantages of employing copula-based models in medical research are explained on the basis of case studies.

In addition, the book focuses on clustered survival data, especially data arising from meta-analysis and multicenter analysis. Consequently, the statistical approaches presented here employ a frailty term for heterogeneity modeling. This brings the joint frailty-copula model, which incorporates a frailty term and a copula, into a statistical model. The book also discusses advanced techniques for dealing with high-dimensional gene expressions and developing personalized dynamic prediction tools under the joint frailty-copula model.

To help readers apply the statistical methods to real-world data, the book provides case studies using the authors' original R software package (freely available in CRAN). The emphasis is on clinical survival data, involving time-to-tumor progression and overall survival, collected on cancer patients. Hence, the book offers an essential reference guide for medical statisticians and provides researchers with advanced, innovative statistical tools. The book also provides a concise introduction to basic multivariate survival models.



Takeshi Emura, Graduate Institute of Statistics, National Central University

Shigeyuki Matsui, Department of Biostatistics, Nagoya University Graduate School of Medicine 

Virginie Rondeau, INSERM U 1219

This book introduces readers to advanced statistical methods for analyzing survival data involving correlated endpoints. In particular, it describes statistical methods for applying Cox regression to two correlated endpoints by accounting for dependence between the endpoints with the aid of copulas. The practical advantages of employing copula-based models in medical research are explained on the basis of case studies. In addition, the book focuses on clustered survival data, especially data arising from meta-analysis and multicenter analysis. Consequently, the statistical approaches presented here employ a frailty term for heterogeneity modeling. This brings the joint frailty-copula model, which incorporates a frailty term and a copula, into a statistical model. The book also discusses advanced techniques for dealing with high-dimensional gene expressions and developing personalized dynamic prediction tools under the joint frailty-copula model. To help readers apply the statistical methods to real-world data, the book provides case studies using the authors original R software package (freely available in CRAN). The emphasis is on clinical survival data, involving time-to-tumor progression and overall survival, collected on cancer patients. Hence, the book offers an essential reference guide for medical statisticians and provides researchers with advanced, innovative statistical tools. The book also provides a concise introduction to basic multivariate survival models.

Takeshi Emura, Graduate Institute of Statistics, National Central UniversityShigeyuki Matsui, Department of Biostatistics, Nagoya University Graduate School of Medicine Virginie Rondeau, INSERM U 1219

Chapter 1: Setting the scene.-1.1 Endpoints.- 1.2 Benefits of investigating correlated endpoints.- 1.3 Copulas and frailty: a brief history.- References.- Chapter 2: Introduction to survival analysis .-2.1 Endpoint and censoring.- 2.2 Kaplan-Meier estimator and survival function.- 2.3 Hazard function.- 2.4 Log-rank test for two-sample comparison.- 2.5 Cox regression.- 2.6 Example of Cox regression.- 2.7 Likelihood inference under non-informative censoring.- 2.8 Theoretical notes.- 2.9 Exercises.- References.- Chapter 3: The joint frailty-copula model for correlated endpoints.- 3.1 Introduction.- 3.2 Semi-competing risks data.- 3.3 Joint frailty-copula model.- 3.4 Penalized likelihood with splines.- 3.5 Case study: ovarian cancer data.- 3.6 Technical note 1: Numerical maximization of the penalized likelihood.- 3.7 Technical note 2: LCV and choice of   and  .- 3.8 Exercises.- References.- Chapter 4: High-dimensional covariates in the joint frailty-copula model.- 4.1 Introduction.- 4.2 Tukey’s compound covariate.- 4.3 Univariate selection.- 4.4 Meta-analytic data with high-dimensional covariates.- 4.5 The joint model with compound covariates .- 4.6 The joint model with ridge or Lasso predictor .- 4.7 Prediction of patient-level survival function .- 4.8 Simulations.- 4.8.1 Simulation design.- 4.8.2 Simulation results.- 4.9 Case study: ovarian cancer data .- 4.9.1 Compound covariate.- 4.9.2 Fitting the joint frailty-copula mode.- 4.9.3 Patient-level survival function.- 4.10 Concluding remarks.- References.- Chapter 5: Dynamic prediction of time-to-death.- 5.1 Accurate prediction of survival.- 5.2 Framework of dynamic prediction.- 5.2.1 Conditional failure function given tumour progression.- 5.2.2 Conditional hazard function given tumour progression.- 5.3 Prediction formulas under the joint frailty-copula model.- 5.4 Estimating prediction formulas.- 5.5 Case study: ovarian cancer data.- 5.6 Discussions.- References.- Chapter 6: Future developments- 6.1 Analysis of recurrent events.- 6.2 Kendall’s tau in meta-analysis.- 6.3 Validation of surrogate endpoints.- 6.4 Left-truncation.- 6.5 Interactions.- 6.6 Parametric failure time models.- 6.7 Compound covariate.- References.- Appendix A: Cubic spline bases.- Appendix B: R codes for the ovarian cancer data analysis.- B1. Using CXCL12 gene as a covariate.- B2. Using compound covariates (CCs) and residual tumour as covariates.- Appendix C: Derivation of prediction formulas.

Erscheint lt. Verlag 25.3.2019
Reihe/Serie JSS Research Series in Statistics
JSS Research Series in Statistics
SpringerBriefs in Statistics
SpringerBriefs in Statistics
Zusatzinfo XVII, 118 p. 29 illus., 19 illus. in color.
Verlagsort Singapore
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Medizin / Pharmazie
Sozialwissenschaften Soziologie Empirische Sozialforschung
Schlagworte Competing Risk • Compound Covariate • Cox Regression • Kendall’s Tau • Meta-analysis • Semi-Competing Risk • Surrogate Endpoint
ISBN-10 981-13-3516-8 / 9811335168
ISBN-13 978-981-13-3516-7 / 9789811335167
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 4,2 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich