Acoustics -  Aime Bergassoli,  Paul Filippi,  Dominique Habault,  Jean Pierre Lefebvre

Acoustics (eBook)

Basic Physics, Theory, and Methods
eBook Download: PDF | EPUB
1998 | 1. Auflage
317 Seiten
Elsevier Science (Verlag)
978-0-08-049855-3 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
78,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
The book is devoted to the very basis of acoustics and vibro-acoustics. The physics of the phenomena, the analytical methods and the modern numerical techniques are presented in a concise form. Many examples illustrate the fundamental problems and predictions (analytic or numerical) and are often compared to experiments. Some emphasis is put on the mathematical tools required by rigorous theory and reliable prediction methods.

Key Features
* a series of practical problems, which reflect the content of each chapter
* reference to the major treatises and fundamental recent papers
* current computing techniques, used in problem solving
The book is devoted to the very basis of acoustics and vibro-acoustics. The physics of the phenomena, the analytical methods and the modern numerical techniques are presented in a concise form. Many examples illustrate the fundamental problems and predictions (analytic or numerical) and are often compared to experiments. Some emphasis is put on the mathematical tools required by rigorous theory and reliable prediction methods. A series of practical problems, which reflect the content of each chapter Reference to the major treatises and fundamental recent papers Current computing techniques, used in problem solving

Front Cover 1
Acoustics: Basic Physics, Theory and Methods 4
Copyright Page 5
Contents 6
Foreword 13
Preface 14
Chapter 1. Physical Basis of Acoustics 18
Introduction 18
1.1. Review of mechanics of continua 18
1.2. Elementary acoustics 28
1.3. Elementary acoustics of solids: Elementary elastic waves 51
1.4. Conclusion 55
Bibliography 55
Chapter 2. Acoustics of Enclosures 58
Introduction 58
2.1. General statement of the problem 59
2.2. Sound field inside a parallelepipedic enclosure: free oscillations and eigenmodes 65
2.3. Transient phenomena - reverberation time 75
2.4. Acoustic field inside a circular enclosure: introduction to the method of separation of variables 88
2.5. Enclosures bounded by plane surfaces: introduction to the method of images 94
2.6. General case: introduction to the Green's representation of acoustic fields 98
Bibliography 104
Chapter 3. Diffraction of Acoustic Waves and Boundary Integral Equations 106
Introduction 106
3.1. Radiation of simple sources in free space 107
3.2. Green's representation of the solution of linear acoustics boundary value problems 119
3.3. Representation of a diffracted field by a layer potential 124
3.4. Boundary integral equations 127
3.5. Two-dimensional Neumann problem for a circular boundary 132
Bibliography 137
Chapter 4. Outdoor Sound Propagation 138
Introduction 138
4.1. Ground effect in a homogeneous atmosphere 139
4.2. Diffraction by an obstacle in homogeneous atmosphere 153
4.3. Sound propagation in an inhomogeneous medium 166
Bibliography 173
Chapter 5. Analytic Expansions and Approximation Methods 176
Introduction 176
5.1. Asymptotic expansions obtained from integral expressions 178
5.2. Kirchhoff approximation 186
5.3. Neumann series 187
5.4. W.K.B. method. Born and Rytov approximations 188
5.5. Image method, ray method, geometrical theory of diffraction 191
5.6. Parabolic approximation 196
5.7. Wiener-Hopf method 199
Bibliography 204
Chapter 6. Boundary Integral Equation Methods - Numerical Techniques 206
Introduction 206
6.1. Techniques of solution of integral equations 208
6.2. Eigenvalue problems 212
6.3. Singularities 217
Bibliography 219
Chapter 7. Introduction to Guided Waves 220
Introduction 220
7.1. Definitions and general remarks 220
7.2. The problem of the waveguide 230
7.3. Radiation of sources in ducts with ' sharp ' interfaces 238
7.4. Shallow water guide 246
7.5. Duct with absorbing walls 253
7.6. Ducts with varying cross section 257
7.7. Conclusion 263
Bibliography 263
Chapter 8. Transmission and Radiation of Sound by Thin Plates 264
Introduction 264
8.1. A simple one-dimensional example 265
8.2. Equation governing the normal displacement of a thin elastic plate 273
8.3. Infinite fluid-loaded thin plate 277
8.4. Finite-dimension baffled plate: expansions of the solution into a series of eigenmodes and resonance modes 288
8.5. Finite-dimension baffled plate: boundary integrals representation of the solution and boundary integral equations 296
8.6. Conclusion 306
Bibliography 306
Chapter 9. Problems 308
Mathematical Appendix: Notations and Definitions 318
Introduction 318
A.1. Notations used in this book 319
A.2. Classical definitions 320
A.3. Function spaces 321
A.4. Distributions or generalized functions 326
A.5. Green's kernels and integral equations 331
Bibliography 332
Index 333

Chapter 1

Physical Basis of Acoustics


J.P. Lefebvre

Introduction


Acoustics is concerned with the generation and space-time evolution of small mechanical perturbations in a fluid (sound waves) or in a solid (elastic waves). Then equations of acoustics are simply obtained by linearization of the equations of the mechanics of continua.

The main phenomenon encountered in acoustics is wave propagation. This phenomenon is the only one that occurs in an infinite homogeneous medium. A second important phenomenon is scattering, due to the various obstacles and inhomogeneities encountered by the wave. A third, more tenuous, phenomenon is absorption and dispersion of waves, due to dissipation processes.

The first and second phenomena need only a simple methodology: derivation of a wave equation and of a boundary condition from the linearized equations of the mechanics of continua for a homogeneous, steady, perfect simple fluid or elastic solid. That simple methodology allows us to solve a lot of problems, as other chapters of the book show. The third phenomenon, more subtle, needs many more conceptual tools, since it must call upon thermodynamics.

In a first step, we recall basic equations of the mechanics of continua for the rather general case of a thermo-viscous fluid or a thermo-elastic solid. One obtains all material necessary for derivation of the acoustic equations in complex situations.

In a second step we restrict ourselves to perfect simple fluids or elastic solids and linearize equations around an initial homogeneous steady state, leading to basic equations of elementary acoustics and elastic waves. Development of these simple cases are then proposed.

1.1 Review of Mechanics of Continua


Since acoustics is defined as small dynamic perturbations of a fluid or a solid, it is useful to make a quick recapitulation of the mechanics of continua in order to establish equations that are to be linearized. Those equations are conservation equations, the state equation and behaviour equations.

1.1.1 Conservation equations


Conservation equations describe conservation of mass (continuity equation), momentum (motion equation) and energy (from the first law of thermodynamics).

Let us consider a portion of material volume Ω filled with a (piecewise) continuous medium (for greater generality we suppose the existence of a discontinuity surface ∑ – a shock wave or an interface – moving at velocity ); the equations of conservation of mass, momentum, and energy are as follows.

Mass conservation equation (or continuity equation). The hypothesis of continuous medium allows us to introduce the notion of a (piecewise continuous) density function ρ, so that the total mass M of the material volume Ω is M = Ω ρ dΩ; the mass conservation (or continuity) equation is written

dt∫ΩρdΩ=0

  (1.1)

where d/dt is the material time derivative of the volume integral.

Momentum conservation equation (or motion equation). Let be the local velocity; the momentum of the material volume Ω is defined as Ωυ→ dΩ; and, if σ is the stress tensor and the supply of body forces per unit volume (or volumic force source), the momentum balance equation for a volume Ω of boundary S with outward normal is written

dt∫Ωρυ→dΩ=∫Sσ.n→dS+∫ΩF→dΩ

  (1.2)

Energy conservation equation (first law of thermodynamics). If e is the specific internal energy, the total energy of the material volume Ω is Ω(e→+12υ→2) dΩ; and, if is the heat flux vector and r the heat supply per unit volume and unit time (or volumic heat source), the energy balance equation for a volume Ω of boundary S with outer normal is written

dt∫Ωρ(e+12υ→2)dΩ=∫S(σ·υ→−q→)·n→dS+∫Ω(F→·υ→+r)dΩ

  (1.3)

Using the lemma on derivatives of integrals over a material volume Ω crossed by a discontinuity ∑ of velocity :

ϕ;ddt∫ΩϕdΩ=∫Ω(∂ϕ∂t+∇·(ϕυ→))dΩ+∫Σ[ϕ(υ→−V→)·n→]ΣdΩ

where [Φ]∑ designates the jump Φ(2) – Φ(1) of the quantity Φ at the crossing of the discontinuity surface ∑; or

dt∫ΩϕdΩ=∫Ω(dϕdt+ϕ∇·υ→)dΩ+∫Σ[ϕ(υ→−V→)·n→]Σdσ

with

˙≡dϕdt=∂ϕ∂t+υ→·∇ϕ

the material time derivative of the function ϕ. Using the formula

U→:∫SU→·n→dS=∫Ω∇·U→dΩ+∫Σ[U→·n→]Σdσ

one obtains

∫Ω(dρdt+ρ∇·υ→)dΩ+∫Σ[ρ(υ→−V→)·n→]Σdσ=0∫Ω(ddt(ρυ→)+ρυ→∇·υ→)dΩ+∫Σ[(ρυ→⊗(υ→−V→))·n→]Σdσ=∫Ω∇·σdΩ+∫Σ[σ·n→]Σdσ+∫ΩF→dΩ∫Ω(ddtρ(e+12υ→2)+ρ(e+12υ→2)∇·υ→)dΩ+∫Σ[ρ(e+12υ→2)(υ→−V→)·n→]Σdσ=∫Ω∇·(σ·υ→−q→)dΩ+∫Σ[(σ·υ→−q→)·n→]Σdσ+∫Ω(F→·υ→+r)dΩ

or

∫Ω(dρdt+ρ∇·υ→)dΩ+∫Σ[ρ(υ→−V→)·n→]Σdσ=0∫Ω(ddt(ρυ→)+ρυ→∇·υ→−∇·σ−F→)dΩ+∫Σ[(ρυ→⊗(υ→−V→)−σ)·n→]Σdσ=0∫Ω(ddt(ρ(e+12υ→2))+ρ(e+12υ→2)∇·υ→−∇·(σ·υ→−q→)−(F→·υ→+r))dΩ+∫Σ[(ρ(e+12υ→2)(υ→−V→)−(σ·υ→−q→))·n→]Σdσ=0

The continuity hypothesis states that all equations are true for any material volume Ω. So one finds the local forms of the conservation equations:

dρdt+ρ∇·υ→=0[ρ(υ→−V→)·n→]Σ=0ddt(ρυ→)+ρυ→∇·υ→−∇·σ−F→=0[(ρυ→⊗(υ→−V→)−σ)·n→]Σ=0ddt(ρ(e+12υ→2))+ρ(e+12υ→2)∇·υ→−∇·(σ·υ→−q→)−(F→·υ→+r)=0[(ρ(e+12υ→2)(υ→−V→)−(σ·υ→−q→))·n→]Σ=0

So at the discontinuities, one obtains

[ρ(N→−V→)·n→]Σ=0[(ρυ→⊗(υ→−V→)−σ)·n→]Σ=0[(ρ(e+12N→2)(N→−V→)−(σ·N→−q→))·n→]Σ=0

  (1.4)

Away from the discontinuity surfaces combining the first three local forms of the conservation equations above, one...

Erscheint lt. Verlag 23.9.1998
Sprache englisch
Themenwelt Sachbuch/Ratgeber
Naturwissenschaften Physik / Astronomie Mechanik
Technik Bauwesen
Technik Fahrzeugbau / Schiffbau
Technik Luft- / Raumfahrttechnik
Technik Maschinenbau
ISBN-10 0-08-049855-8 / 0080498558
ISBN-13 978-0-08-049855-3 / 9780080498553
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 13,8 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 6,0 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
die klassischen Feldtheorien in moderner Darstellung

von Wolfgang H. Müller; Elena N. Vilchevskaya

eBook Download (2024)
Carl Hanser Verlag GmbH & Co. KG
39,99