Linkage Thermodynamics of Macromolecular Interactions (eBook)
473 Seiten
Elsevier Science (Verlag)
978-0-08-058224-5 (ISBN)
This volume commemorates the 50th anniversary of the appearance in Volume 4 in 1948 of Dr. Jeffries Wyman's famous paper in which he "e;laid down"e; the foundations of linkage thermodynamics. Experts in this area contribute articles on the state-of-the-art of this important field and on new developments of the original theory. Among the topics covered in this volume are electrostatic contributions to molecular free energies in solution; site-specific analysis of mutational effects in proteins; allosteric transitions of the acetylcholine receptor; and deciphering the molecular code of hemoglobin allostery.
Front Cover 1
Advances in Protein Chemistry, Volume 51 4
Copyright Page 5
Contents 6
Introduction 10
Chapter 1. Electrostatic Contributions to Molecular Free Energies in Solution 12
I. Introduction 12
II. Theory and Calculational Methods 14
III. Applications 31
IV. Outlook 64
References 65
Chapter 2. Site-Specific Analysis of Mutational Effects in Proteins 70
I. Introduction 70
II. The Reference Cycle 72
III. Structural Mapping of Energetics 74
IV. Site-Specific Analysis of Mutational Effects in Proteins 84
V. Site-Specific Dissection of Thrombin Specificity 90
VI. Concluding Remarks 124
References 126
Chapter 3. Allosteric Transitions of the Acetylcholine Receptor 132
I. Introduction 132
II. Mechanistic Models 138
III. Recovery from Desensitization 144
IV. Kinetic Basis of Dose–Response Curves 148
V. Multiple Phenotypes 152
VI. Deductions from Single-Channel Measurements 160
VII. Allosteric Effectors and Coincidence Detection 174
VIII. General Considerations 177
References 184
Chapter 4. Deciphering the Molecular Code of Hemoglobin Allostery 196
I. Introduction 196
II. Overview 201
III. Binding Curves and Stoichiometric Information 209
IV. Site-Specific Aspects of Oxygen Binding 217
V. Experimental Determination of Site-Specific Cooperativity Terms 222
VI. How the Molecular Code Was Deciphered 232
VII. Concluding Remarks 257
References 259
Chapter 5. Statistical Thermodynamic Linkage between Conformational and Binding Equilibria 266
I. Introduction 266
II. The Most Probable Distribution 268
III. Coupling of Statistical Weights to Ligands 268
IV. Modulation of Distribution of States by Specific Ligands 270
V. Modulation of Distribution of States by Denaturants 273
VI. Ligand-Induced Conformational Changes 274
VII. The Distribution of Conformational States According to Their Gibbs Energy 274
VIII. Is the Unfolded State the State with the Highest Gibbs Energy? 278
IX. The Gibbs Energy Scale of Conformational States 280
X. Statistical Descriptors of the Conformational Ensemble 282
XI. Conclusions 289
References 289
Chapter 6. Analysis of Effects of Salts and Uncharged Solutes on Protein and Nucleic Acid Equilibria and Processes: A Practical Guide to Recognizing and Interpreting Polyelectrolyte Effects, Hofmeister Effects, and Osmotic Effects of Salts 292
I. Introduction 293
II. Overview of Concentration-Dependent Effects of Perturbing Solutes on Processes Involving Biopolymers 297
III. Preferential Interaction Coefficients as Fundamental Measures of Thermodynamic Effects due to Solute–Biopolymer Interactions 306
IV. Preferential Interactions of Nonelectrolyte Molecules with an Uncharged Biopolymer 314
V. Preferential Interactions of Electrolyte Ions with a Charged Biopolymer 322
VI. Use of Three-Component Preferential Interaction Coefficients to Analyze Effects of Solute Concentration on Equilibrium Constants, Transition Temperatures, or Free Energy Changes of Biopolymer Processes 330
VII. Two-Domain Predictions of Functional Forms of Effects of Nonelectrolyte Concentration on Equilibria (Kobs) and Transition Temperatures ( Tm ) of Uncharged Biopolymers in Aqueous Solution 337
VIII. Polyelectrolyte and Two-Domain Predictions of Functional Forms of Effects of Salt Concentration on Equilibria (Kobs) and Transition Temperatures ( Tm ) of Charged Biopolymers in Aqueous Solution 341
IX. Conclusions and Future Directions 358
References 361
Chapter 7. Control of Protein Stability and Reactions by Weakly Interacting Cosolvents: The Simplicity of the Complicated 366
I. Introduction 367
II. Preferential Interactions 371
III. Wyman Linkages in Preferential Interactions 389
IV. Linkage Control of Protein Stability 398
V. Linkage Control of Protein Reactions 420
VI. Sources of Exclusion 427
VII. Osmolytes 434
VIII. Conclusion 436
References 439
Author Index 444
Subject Index 464
Electrostatic Contributions to Molecular Free Energies in Solution
Michael Schaefer1; Herman W.T. Van Vlijmen2,*; Martin Karplus1,2 1 Laboratoire de Chimie Biophysique, Institut le Bel, Université Louis Pasteur 67000 Strasbourg France
2 Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138
* Biogen Inc., 12 Cambridge Center, Cambridge, Massachusetts 02142.
I INTRODUCTION
Protein titration provides a notable example of the specific binding of multiple ligands (protons) to a macromolecule, the subject of the linked function theory introduced by Wyman (1948) and fully elaborated in the book by Wyman and Gill (1990). It is of particular interest because it is, at present, the only case for which theoretical evaluation of the binding constants is possible. Moreover, every protein has a large number of binding sites for protons, and in certain cases the individual site binding constants, as well as the overall binding (titration) behavior, have been measured (Tanford and Roxby, 1972; Bashford and Karplus, 1990). The protonation of titratable sites in proteins clearly falls into the category of specific binding, i.e., every successive binding of a proton can be expressed as a chemical reaction in which the chemical activity of the protein species and the proton chemical potential are related by the law of mass action (Wyman and Gill, 1990). The theory of linked functions thus provides the theoretical basis for a quantitative treatment of protein titration (Wyman, 1964; Szabo and Karplus, 1972; Schellman, 1975). Further, an accurate theoretical understanding of the pKa’s of titratable sites in proteins and the pH dependence of electrostatic free energies are important because ionizable groups play an essential role in numerous processes of biological interest, e.g., enzyme catalysis (Knowles, 1976; Warshel et al., 1989), proton transport (Warshel, 1979; Zhou et al., 1993), and the stability of molecules and molecular assemblies (Yang and Honig, 1993; Antosiewicz et al., 1994; Schaefer et al., 1997).
In this review of protein titration, methods for the calculation of protein pKa’s and pH-dependent electrostatic free energies in solution will be developed on the basis of linked function theory, and applied to the calculation of lysozyme pKa’s, the pH dependence of the stability of native lysozyme, and the pH dependence of the stability of the capsid of foot-and-mouth disease virus. In the latter application, the contributions from individual sites will be addressed, in particular those that are responsible for the acid lability of the capsid. Furthermore, a simplified model for the pH dependence of binding free energies will be derived based on the pKa’s of the system (“independent sites” model).
To formulate the problem, we consider only two protonation states for each site, unprotonated and protonated. This “two-state model” represents an implicit averaging over multiple protonated (unprotonated) states of the anionic (cationic) sites. For example, only one unprotonated state for histidine is considered where the proton charge is equally distributed among δ1 and ∈2 (see Table I in Section II,D). The protonation state of a protein with N sites can then be described by a vector ¯ with N components, where the component si is
i=0,ifsiteiisunprotonated1,ifsiteiisunprotonated
(1)
Table I
Titrating Sites in the Two-State Modela
Arg | 12.48 | CD | 0.20 | 0.20 | His (con’d) | HD1 | 0.16 | 0.44 |
HD1 | 0.09 | 0.09 | CD2 | 0.09 | 0.19 |
HD2 | 0.09 | 0.09 | HD2 | 0.09 | 0.13 |
NE | − 0.70 | − 0.70 | CE1 | 0.25 | 0.32 |
HE | 0.44 | 0.44 | HE1 | 0.13 | 0.18 |
cz | 0.44 | 0.64 | NE2 | − 0.53 | − 0.51 |
NH1 | − 0.80 | − 0.80 | HE2 | 0.16 | 0.44 |
HH11 | 0.26 | 0.46 |
HH12 | 0.26 | 0.46 | LYS | 10.79 | CE | 0.18 | 0.21 |
NH2 | − 0.80 | − 0.80 | HE1 | 0.05 | 0.05 |
HH21 | 0.26 | 0.46 | HE2 | 0.05 | 0.05 |
HH22 | 0.26 | 0.46 | NZ | − 0.96 | − 0.30 |
HZ 1 | 0.34 | 0.33 |
Asp | 4.00 | CB | − 0.28 | − 0.21 | HZ2 | 0.34 | 0.33 |
HB1 | 0.09 | 0.09 | HZ3 | 0.00 | 0.33 |
HB2 | 0.09 | 0.09 |
CG | 0.62 | 0.75 | N-Ter | 7.50 | N | − 0.96 | − 0.30 |
OD... |
Erscheint lt. Verlag | 24.6.1998 |
---|---|
Mitarbeit |
Herausgeber (Serie): David S. Eisenberg, Peter S. Kim, Frederic M. Richards |
Sprache | englisch |
Themenwelt | Sachbuch/Ratgeber |
Naturwissenschaften ► Biologie ► Biochemie | |
Naturwissenschaften ► Biologie ► Genetik / Molekularbiologie | |
Naturwissenschaften ► Chemie ► Physikalische Chemie | |
Naturwissenschaften ► Physik / Astronomie ► Thermodynamik | |
Technik | |
ISBN-10 | 0-08-058224-9 / 0080582249 |
ISBN-13 | 978-0-08-058224-5 / 9780080582245 |
Haben Sie eine Frage zum Produkt? |
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich