Variational and Quasi-Variational Inequalities in Mechanics - Alexander S. Kravchuk, Pekka J. Neittaanmäki

Variational and Quasi-Variational Inequalities in Mechanics

Buch | Hardcover
337 Seiten
2007 | 2007 ed.
Springer-Verlag New York Inc.
978-1-4020-6376-3 (ISBN)
139,09 inkl. MwSt
The variational method is a powerful tool to investigate states and processes in technical devices, nature, living organisms, systems, and economics. It is known that equating the virtual work performed for potential systems to zero is equivalent to the stationarity conditions for the total energy of the system.
The variational method is a powerful tool to investigate states and processes in technical devices, nature, living organisms, systems, and economics. The power of the variational method consists in the fact that many of its sta- ments are physical or natural laws themselves. The essence of the variational approach for the solution of problems rel- ing to the determination of the real state of systems or processes consists in thecomparisonofclosestates.Theselectioncriteriafortheactualstatesmust be such that all the equations and conditions of the mathematical model are satis?ed. Historically, the ?rst variational theory was the Lagrange theory created to investigate the equilibrium of ?nite-dimensional mechanical systems under holonomic bilateral constraints (bonds). The selection criterion proposed by Lagrange is the admissible displacement principle. In accordance with this principle, the work of the prescribed forces (supposed to be constant) on in?nitesimally small, kinematically admissible (virtual) displacements is zero. It is known that equating the virtual work performed for potential systems to zero is equivalent to the stationarity conditions for the total energy of the system. The transition from bilateral constraints to unilateral ones was performed by O. L. Fourier. Fourier demonstrated that the virtual work on small dist- bances of a stable equilibrium state of a mechanical system under unilateral constraints must be positive (or, at least, nonnegative). Therefore, for such a system the corresponding mathematical model is reduced to an inequality and the problem becomes nonlinear.

Notations and Basics.- Variational Setting of Linear Steady-state Problems.- Variational Theory for Nonlinear Smooth Systems.- Unilateral Constraints and Nondifferentiable Functionals.- Transformation of Variational Principles.- Nonstationary Problems and Thermodynamics.- Solution Methods and Numerical Implementation.- Concluding Remarks.

Erscheint lt. Verlag 27.9.2007
Reihe/Serie Solid Mechanics and Its Applications ; 147
Zusatzinfo XIII, 337 p.
Verlagsort New York, NY
Sprache englisch
Maße 155 x 235 mm
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Naturwissenschaften Physik / Astronomie Mechanik
Technik Maschinenbau
ISBN-10 1-4020-6376-8 / 1402063768
ISBN-13 978-1-4020-6376-3 / 9781402063763
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Eine kurze Geschichte der Informationsnetzwerke von der Steinzeit bis …

von Yuval Noah Harari

Buch | Hardcover (2024)
Penguin (Verlag)
28,00