Energy Conversion Efficiency of Solar Cells -  Shigeo Asahi,  Yukihiro Harada,  Takashi Kita

Energy Conversion Efficiency of Solar Cells (eBook)

eBook Download: PDF
2019 | 1. Auflage
XII, 202 Seiten
Springer Singapore (Verlag)
978-981-13-9089-0 (ISBN)
Systemvoraussetzungen
117,69 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book offers a concise primer on energy conversion efficiency and the Shockley-Queisser limit in single p-n junction solar cells. It covers all the important fundamental physics necessary to understand the conversion efficiency, which is indispensable in studying, investigating, analyzing, and designing solar cells in practice. As such it is valuable as a supplementary text for courses on photovoltaics, and bridges the gap between advanced topics in solar cell device engineering and the fundamental physics covered in undergraduate courses.

The book first introduces the principles and features of solar cells compared to those of chemical batteries, and reviews photons, statistics and radiation as the physics of the source energy. Based on these foundations, it clarifies the conversion efficiency of a single p-n junction solar cell and discusses the Shockley-Queisser limit. Furthermore, it looks into various concepts of solar cells for breaking through the efficiency limit given in the single junction solar cell and presents feasible theoretical predictions. To round out readers' knowledge of p-n junctions, the final chapter also reviews the essential semiconductor physics.

The foundation of solar cell physics and engineering provided here is a valuable resource for readers with no background in solar cells, such as upper undergraduate and master students. At the same time, the deep insights provided allow readers to step seamlessly into other advanced books and their own research topics.



Takashi Kita is a Professor at Kobe University. He received his Doctor of Engineering degree from Osaka University in 1991. In 1990 he was appointed as Assistant Professor at Kobe University, and promoted to Associate Professor and his current position in 2000 and 2007, respectively. In 1996, he worked as a Visiting Researcher in the group led by Professor Hans-Joachim Queisser, Max-Plank Institute. His work is mainly concerned with the development of high-performance photonic devices, and has been recognized with the Japan Society of Applied Physics Fellow Award.

Yukihiro Harada is an Assistant Professor at Kobe University, where he received his Doctor of Engineering degree in 2009 and was appointed to his current position the same year. From 2016 to 2017, he worked as a Visiting Researcher in the group led by Dr. Nicholas J. Ekins-Daukes, Imperial College London, UK. His work is mainly concerned with the optical properties of semiconductor nanostructures. He is a member of the Japan Society of Applied Physics, the Physical Society of Japan, and the Optical Society of America.

Shigeo Asahi is a Project Assistant Professor at Kobe University. He received his Master of Engineering degree from the University of Tokyo in 2003. After working for a private company for ten years, he enrolled at Kobe University in 2013 and completed his PhD in 2016. He was appointed to his current position the same year. His work is mainly concerned with the development of high-efficiency solar cells.


This book offers a concise primer on energy conversion efficiency and the Shockley-Queisser limit in single p-n junction solar cells. It covers all the important fundamental physics necessary to understand the conversion efficiency, which is indispensable in studying, investigating, analyzing, and designing solar cells in practice. As such it is valuable as a supplementary text for courses on photovoltaics, and bridges the gap between advanced topics in solar cell device engineering and the fundamental physics covered in undergraduate courses.The book first introduces the principles and features of solar cells compared to those of chemical batteries, and reviews photons, statistics and radiation as the physics of the source energy. Based on these foundations, it clarifies the conversion efficiency of a single p-n junction solar cell and discusses the Shockley-Queisser limit. Furthermore, it looks into various concepts of solar cells for breaking through the efficiency limitgiven in the single junction solar cell and presents feasible theoretical predictions. To round out readers knowledge of p-n junctions, the final chapter also reviews the essential semiconductor physics.The foundation of solar cell physics and engineering provided here is a valuable resource for readers with no background in solar cells, such as upper undergraduate and master students. At the same time, the deep insights provided allow readers to step seamlessly into other advanced books and their own research topics.
Erscheint lt. Verlag 6.7.2019
Sprache englisch
Original-Titel Taiyou Denchi No Enerugii Henkan Kouritsu
Themenwelt Naturwissenschaften Biologie Ökologie / Naturschutz
Naturwissenschaften Physik / Astronomie Festkörperphysik
Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
Schlagworte Carrier Generation and Recombination in Solar Cells • Detailed Balance Theory in Photovoltaics • Energy Conversion Efficiency Limit in PN Junction Solar Cells • p-n junction diode • P-N junction semiconductor • Primer on Photovoltaics • Primer on Solar Cells • Primer on Solar Energy Conversion • semiconductor materials as photovoltaics • Shockley-Queisser limit • Solar cell efficiency
ISBN-10 981-13-9089-4 / 9811390894
ISBN-13 978-981-13-9089-0 / 9789811390890
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 10,2 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich