Global Satellite Meteorological Observation (GSMO) Theory (eBook)

Volume 1
eBook Download: PDF
2017 | 1st ed. 2018
XXVI, 546 Seiten
Springer International Publishing (Verlag)
978-3-319-67119-2 (ISBN)

Lese- und Medienproben

Global Satellite Meteorological Observation (GSMO) Theory - Stojče Dimov Ilčev
Systemvoraussetzungen
223,63 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book presents the principal structure of space systems, functionality, media and applications for modern remote sensing, transmission systems, meteorological antennas, propagation meteorological observation and transferring weather data from satellite to the ground infrastructures and users. The book starts with a short background to the development of Radio and Space systems including overview, concepts and applications of satellite communications in function of transfer meteorological observation data and images. It goes on to discuss the fundamental principles of the space platforms and orbital parameters, lows of satellite motions, new types of launching systems, satellite orbits and geometric relations, spacecraft configuration, payload structure, type of onboard antenna systems, satellite orbits and components of satellite bus. The author also provides comprehensive coverage of baseband and transmission systems, fundamentals of atmospheric electromagnetic radiation, satellite meteorological parameters and instruments, and research and applications in antenna systems and propagation. This is a companion book of Global Satellite Meteorological Observation Applications (Springer).



Prof. Stojče Dimov Ilčev is Chair of Space Science Centre (SSC) for Research and Postgraduate Studies in Space CNS for Maritime, Land and Aeronautical Applications, Global Satellite Augmentation Systems (GSAS), GNSS Systems, Satellite Tracking Systems, Mobile Broadcasting and Meteorological Observation Systems at Durban University of Technology (DUT), Durban, South Africa. He studies both Maritime radio engineering and Nautical science at Montenegro University in Kotor, Maritime electronics and communications at Rijeka University in Croatia, Postgraduate satellite engineering at Skopie University in Macedonia and Belgrade University in Serbia. Ilčev holds Bachelor (BSc), Master in Electrical Engineering  (MSc) and Doctor of Science (PhD) degrees. He also holds the certificates for Radio operator 1st class (Morse), for GMDSS 1st class Radio Electronic Operator and Maintainer and for Master Mariner without limitations. Since 1969, Ilčev worked onboard merchant ships, in Sate

llite Earth Station, at Coast Radio Station, shipping company, Nautical School and at Maritime Faculty. Since 2000, he worked at IS Marine Radio and CNS Systems companies on research and projects relating to modern Communication, Navigation and Surveillance (CNS) for maritime, land and aeronautical applications. He has written five books on CNS engineering and satellite systems for mobile applications and he has many projects and inventions in this field including DVB-RCS standards and Stratospheric Platforms.   

Prof. Stojče Dimov Ilčev is Chair of Space Science Centre (SSC) for Research and Postgraduate Studies in Space CNS for Maritime, Land and Aeronautical Applications, Global Satellite Augmentation Systems (GSAS), GNSS Systems, Satellite Tracking Systems, Mobile Broadcasting and Meteorological Observation Systems at Durban University of Technology (DUT), Durban, South Africa. He studies both Maritime radio engineering and Nautical science at Montenegro University in Kotor, Maritime electronics and communications at Rijeka University in Croatia, Postgraduate satellite engineering at Skopie University in Macedonia and Belgrade University in Serbia. Ilčev holds Bachelor (BSc), Master in Electrical Engineering  (MSc) and Doctor of Science (PhD) degrees. He also holds the certificates for Radio operator 1st class (Morse), for GMDSS 1st class Radio Electronic Operator and Maintainer and for Master Mariner without limitations. Since 1969, Ilčev worked onboard merchant ships, in Satellite Earth Station, at Coast Radio Station, shipping company, Nautical School and at Maritime Faculty. Since 2000, he worked at IS Marine Radio and CNS Systems companies on research and projects relating to modern Communication, Navigation and Surveillance (CNS) for maritime, land and aeronautical applications. He has written five books on CNS engineering and satellite systems for mobile applications and he has many projects and inventions in this field including DVB-RCS standards and Stratospheric Platforms.   

Preface 6
Acknowledgments 9
Contents 11
About the Author 23
Chapter 1: Introduction 24
1.1 Evolution of Meteorological Observations 25
1.2 History of Early Radio Communication Systems 28
1.2.1 Evolution of Satellite Communications 33
1.2.2 Experiments with Active Communications Satellites 38
1.2.3 Early Progress in Mobile Satellite Communications and Navigation 40
1.2.4 Early Development in Meteorological Observation Systems 43
1.3 Development of Global Mobile Satellite Systems (GMSS) 44
1.3.1 Global Mobile Satellite Communications (GMSC) 45
1.3.2 Global Navigation Satellite Systems (GNSS) 47
1.3.3 Stratospheric Platform Systems (SPS) 49
1.3.4 Satellite Meteorological Observation Systems (SMOS) 50
1.4 Definition of Fixed Satellite Communications (FSC) 51
1.4.1 Satellite Voice Network 52
1.4.2 Satellite VSAT Network 52
1.5 Definition of Mobile VSAT Service 55
1.5.1 Mobile Broadcast Satellite Service (MBSS) 56
1.5.2 Mobile Satellite Broadband Service (MSBS) 58
1.6 International Coordination Organizations and Regulatory Procedures 59
1.6.1 International Telecommunications Union (ITU) and Radio Regulations 59
1.6.2 World Meteorological Organization (WMO) 60
1.6.3 International Hydrographic Organization (IHO) 61
1.7 Space Systems and Radiocommunication Frequency Assignment 62
1.7.1 Meteorological Space and Ground Segments 62
1.7.2 Meteorological Frequency Designations and Classification of Services 62
1.8 History of Satellite Meteorology 65
1.8.1 Early Meteorological Instrumentation 66
1.8.2 Evolution of PEO Meteorological Satellites 70
1.8.3 Evolution of GEO Meteorological Satellites 78
1.8.4 Evolution of Non-GEO Meteorological Satellites 80
1.9 Mobile Satellite Meteorological Service (MSMS) 82
1.9.1 WEFAX System 84
1.9.2 Automatic Picture Transmission (APT) 85
1.9.3 Applied Weather Technology (AWT) 87
1.9.4 Global Meteorological Technologies (GMT) 88
1.9.5 Maritime Noble Denton Weather Services (NDWS) 89
1.9.6 Global Sea State Information via Internet (GSSII) 89
1.9.7 Aeronautical Weather Applications 90
1.9.7.1 Aviation Routine Weather Report (METAR) 91
1.9.7.2 Aeronautical Weather Forecast 92
Chapter 2: Space Segment 94
2.1 Platforms and Orbital Mechanics 95
2.1.1 Space Environment 96
2.1.2 History of Motions in Space 96
2.1.3 Laws of Satellite Motion 97
2.1.3.1 Geometry of Elliptical Orbit 101
2.1.3.2 Geometry of Circular Orbit 103
2.1.4 Horizon and Geographic Satellite Coordinates 104
2.1.4.1 Satellite Distance and Coverage Area 104
2.1.4.2 Satellite Look Angles (Elevation and Azimuth) 109
2.1.4.3 Satellite Track and Geometry (Longitude and Latitude) 111
2.1.5 Orientation in Space 113
2.1.6 Satellite Orbit Perturbations 116
2.2 Spacecraft Launching and Station-Keeping Techniques 120
2.2.1 Satellite Installation and Launching Operations 121
2.2.1.1 Direct Ascent Launching 121
2.2.1.2 Indirect Ascent Launching 121
2.2.2 Satellite Launchers and Launching Systems 122
2.2.2.1 Expendable Launching Vehicles 122
2.2.2.2 Reusable Launch Vehicles 123
2.2.2.3 Land-Based Launching Systems 126
2.2.2.4 Sea-Based Launch Systems 127
2.3 Types of Orbits for Meteorological and Other Satellite Systems 131
2.3.1 Low Earth Orbits (LEO) 132
2.3.2 Circular Orbits 133
2.3.2.1 Medium Earth Orbits (MEO) 133
2.3.2.2 Geostationary Earth Orbits (GEO) 134
2.3.2.3 Geosynchronous Inclined Orbits (GIO) 135
2.3.3 Highly Elliptical Orbits (HEO) 136
2.3.3.1 Molniya Orbit 138
2.3.3.2 Tundra Orbit 140
2.3.3.3 Loopus Orbit 140
2.3.4 Polar Earth Orbits (PEO) 141
2.4 Main Characteristics of Metrological Satellite Orbits 143
2.4.1 Sunsynchronous Polar Orbits 143
2.4.2 Geostationary Circular Orbits 145
2.4.3 Other Satellite Orbits 147
2.5 Meteorological Satellite Payloads and Antenna Systems 148
2.5.1 Transparent or Bent-pipe Communication Transponder 149
2.5.2 Regenerative Communication Transponder 150
2.5.3 Satellite Meteorological e Communication Transponder 151
2.5.4 Diagram of VSAT GEO Satellite Communication Repeater 153
2.5.5 Antenna System onboard Metrological Satellites 154
2.5.5.1 Reflector Antennas 155
2.5.5.2 Aperture Antennas (Horn Antennas) 156
2.5.5.3 Array Antennas 156
2.5.6 Characteristics of Spacecraft Antenna System 157
2.6 Satellite Bus 159
2.6.1 Structure Platform (SP) 160
2.6.2 Electric Power (EP) 160
2.6.3 Thermal Control (TC) 162
2.6.4 Attitude and Orbit Control (AOC) 163
2.6.5 Telemetry, Tracking and Command (TTandC) 164
2.6.6 Propulsion Engine (PE) 166
Chapter 3: Baseband and Transmission Systems 167
3.1 Baseband Signals 168
3.1.1 Voice Signals 169
3.1.2 Data and Multimedia Signals 170
3.1.3 Sound (Audio) Signals 171
3.1.4 Video and Television Signals 172
3.1.5 Basic Concept of Modulation 173
3.1.6 Analog and Digital Domains 174
3.2 Analog Transmission 175
3.2.1 Baseband Processing 176
3.2.2 Analog Modulation and Multiplexing 177
3.2.2.1 Amplitude Modulation (AM) 178
3.2.2.2 Frequency Modulation (FM) 179
3.2.2.3 Phase Modulation (PM) 180
3.2.3 Double Side Band-Amplitude Modulation (DSB-AM) 180
3.2.4 Single Side Band-Amplitude Modulation (SSB-AM) 182
3.2.5 Frequency Division Multiplexing (FDM) 183
3.3 Digital Transmission 184
3.3.1 Delta Modulation (DM) 186
3.3.2 Coded Modulation (CM) 188
3.3.2.1 Trellis Coded Modulation (TCM) 188
3.3.2.2 Block Coded Modulation (BCM) 189
3.3.3 Pulse Code Modulation (PCM) 189
3.3.4 Quadrature Amplitude Modulation (QAM) 191
3.3.5 Time Division Multiplexing (TDM) 192
3.3.6 Types of Digital Shift Keying 193
3.3.6.1 Amplitude Shift Keying (ASK) 193
3.3.6.2 Frequency Shift Keying (FSK) 194
3.3.6.3 Minimum Shift Keying (MSK) 194
3.3.6.4 Phase Shift Keying (PSK) 195
3.3.7 Combinations of PSK Digital Carriers 195
3.3.7.1 Binary PSK (BPSK) 196
3.3.7.2 Quadrature PSK (QPSK) 196
3.3.7.3 Offset QPSK (O-QPSK) 198
3.3.7.4 Differential PSK (DPSK) 199
3.3.7.5 pi/4-QPSK 200
3.4 Channel Coding and Decoding 201
3.4.1 Channel Processing 201
3.4.1.1 Channel Encoding 201
3.4.1.2 Digital Compression 203
3.4.2 Coding 204
3.4.2.1 Block Codes 204
3.4.2.2 Cyclic Codes 205
3.4.2.3 Convolutional Codes 207
3.4.2.4 Concatenated Codes 209
3.4.2.5 Turbo Codes 210
3.4.3 Decoding 211
3.4.3.1 Block Decoding 211
3.4.3.2 Convolutional Decoding 211
3.4.3.3 Turbo Decoding 212
3.4.3.4 Sequential Decoding 212
3.4.3.5 Viterbi Decoding 212
3.4.4 Error Correction 213
3.4.4.1 Forward Error Correction (FEC) 214
3.4.4.2 Automatic Request Repeat (ARQ) 215
3.4.4.3 Pseudo Noise (PN) 216
3.4.4.4 Interleaving 217
3.5 Multiple Access Technique 218
3.5.1 Frequency Division Multiple Access (FDMA) 221
3.5.1.1 Multiple Channels Per Carrier (MCPC) 222
3.5.1.2 Single Channel Per Carrier (SCPC) 223
3.5.2 Forms of FDMA Operations 224
3.5.2.1 SCPC/FM/FDMA 224
3.5.2.2 SCPC/PSK/FDMA 224
3.5.2.3 TDM/FDMA 225
3.5.2.4 TDMA/FDMA 225
3.5.3 Time Division Multiple Access (TDMA) 225
3.5.3.1 TDM/TDMA 226
3.5.3.2 FDMA/TDMA 227
3.5.4 Code Division Multiple Access (CDMA) 227
3.5.4.1 Direct Sequence CDMA (DS-CDMA) 229
3.5.4.2 Frequency Hopping CDMA (FH-CDMA) 230
3.5.5 Space Division Multiple Access (SDMA) 231
3.5.5.1 Special Effects of SDMA in Satellite Systems 232
3.5.5.2 Switched Spot Beam Antenna 234
3.5.5.3 Adaptive Array Antenna Systems 235
3.5.5.4 SDMA/FDMA 236
3.5.5.5 SDMA/TDMA 236
3.5.5.6 SDMA/CDMA 237
3.5.6 Random Division Multiple Access (RDMA) 237
3.5.6.1 Aloha 238
3.5.6.2 Slotted Aloha 239
3.5.6.3 Slot Reservation Aloha 240
3.6 Satellite Broadband and Internet Protocols 241
3.6.1 Satellite Internet Protocol (IP) 242
3.6.1.1 IP Security Protocol (IPSec) 243
3.6.1.2 Mobile Transmissions Over IP (MToIP) 243
3.6.1.3 Mobile IP Version 6 (MIPv6) 244
3.6.2 Transmission Control Protocol (TCP) 245
3.6.2.1 TCP/IP Over Satellite 246
3.6.2.2 TCP Intertwined Algorithms 247
3.6.3 Mobile Asynchronous Transfer Mode (ATM) 248
3.6.3.1 IP/ATM Over Satellite 250
3.6.3.2 UBR Over Satellite 253
3.6.3.3 ABR Over Satellite 254
3.6.4 Fixed Digital Video Broadcasting-Return Channel Via Satellite (DVB-RCS) 255
3.6.5 Mobile Digital Video Broadcasting-Return Channel Over Satellite (DVB-RCS) 257
3.7 MPEG Multimedia Standards 259
3.7.1 Audio Broadcasting 259
3.7.1.1 MPEG-2 Audio Layer II (MP2) Encoding 259
3.7.1.2 MPEG-2 Audio Layer III (MP3) Encoding 260
3.7.2 Video Broadcasting 260
3.7.2.1 MPEG-2 Video Encoding 260
3.7.2.2 High-Definition TV and MPEG-4 261
3.7.2.3 Multiplexing and Transporting 261
3.8 Direct-to-Home Broadcast System 262
3.8.1 Transmission System Architecture 263
3.8.2 Generic Reference Integrated Receiver Decoder (IRD) Model 264
3.9 Transmission Standards 264
3.9.1 Digital Video Broadcast-Second Generation (DVB-S2) Standard 265
3.9.2 DVB-S2 Architecture 266
3.9.3 Digital Video Broadcast-Third Generation (DVB-S3) Standard 268
Chapter 4: Atmospheric Electromagnetic Radiation 270
4.1 Fundamentals of Atmospheric Radiative Transfer 270
4.1.1 Nature of Radiation 272
4.1.1.1 Basic of Radiation 273
4.1.1.2 Solid Angle 274
4.1.1.3 Radiance and Irradiance 277
4.1.1.4 Energy Transitions 278
4.2 Energy Emissions 279
4.2.1 Blackbody Emission 280
4.2.2 Surface Emission 282
4.2.3 Medium Emissivity 282
4.2.4 Earth and Sun Applications 283
4.3 Radiative Properties of Matter 284
4.3.1 Electromagnetic Spectrum and Waves 285
4.3.2 Absorption and Emission of Radiation 286
4.3.3 Atmospheric Scattering of Radiation 289
4.3.4 Surface Reflection 292
4.3.5 Solar and Terrestrial Radiation 292
4.3.6 Conservation of Energy 294
4.3.7 Selective Absorption and Emission 296
4.3.8 Composition of the Earth´s Atmosphere 296
4.3.9 Different Atmospheric Absorptions and Emissions 297
4.4 Additional Applications to the Earth´s Atmosphere 300
4.4.1 Transfer of the Heat Energy 300
4.4.2 Feedbacks in the Atmosphere 301
4.4.3 Specific Facts for Aerosols 303
4.4.4 Earth and Atmosphere Albedo 304
4.5 Radiative Transfer Equations (RTE) 305
4.5.1 Primers of Radiations 307
4.5.1.1 Infrared Radiation 307
4.5.1.2 Visible Radiation 308
4.5.2 Radiative Budget for the Earth Atmosphere System 309
4.5.2.1 Solar Constant and Emission Effective Temperature 309
4.5.2.2 Energy Budget for the Earth/Atmosphere System 311
Chapter 5: Satellite Meteorological Parameters 313
5.1 Introduction to Satellite Weather Observation 314
5.1.1 Satellite Meteorological Instruments for Observation and Monitoring 315
5.1.2 Satellite Weather Imagery 317
5.1.3 Characteristics of Satellite Imagery 318
5.1.3.1 Visible Channel Imagery 319
5.1.3.2 Infra Red Channel Imagery 319
5.1.3.3 Water Vapour Channel Imagery 320
5.1.3.4 True Colour RGB Channel Imagery 323
5.1.4 Weather and Atmospheric Properties 324
5.1.4.1 Atmospheric Temperature Measurements 324
5.1.4.2 Atmospheric Density Measurements 326
5.1.4.3 Atmospheric Pressure Measurements 327
5.1.4.4 Atmospheric Humidity Measurements 327
5.2 Temperature and Trace Gases 328
5.2.1 Sounding Theory 328
5.2.1.1 Vertical Sounding Theory 328
5.2.1.2 Limb Sounding Theory 331
5.2.2 Retrieval Methods 332
5.2.2.1 Physical Retrievals 332
5.2.2.2 Statistical Retrievals 334
5.2.2.3 Hybrid Retrievals 335
5.2.3 Operational Retrievals 337
5.2.3.1 TIROS Operational Vertical Sounder 337
5.2.3.2 VISSR Atmospheric Sounder (VAS) 339
5.2.4 Limb Sounding Retrievals 341
5.2.5 Ozone and Other Gases 342
5.2.6 Split-Window Technique 343
5.3 Winds Flow 345
5.3.1 Cloud and Vapour Tracking 345
5.3.2 Winds from Soundings 346
5.3.3 Ocean Surface Winds 347
5.3.4 Doppler Wind Measurements 350
5.4 Clouds and Aerosols 350
5.4.1 Clouds from Sounders 350
5.4.2 Clouds from Imagers 351
5.4.3 Clouds from Microwave Radiometry 355
5.4.4 Stratospheric Aerosols 356
5.4.5 Tropospheric Aerosols 357
5.5 Precipitation Measuring 359
5.5.1 Passive Visible and Infrared Techniques 361
5.5.2 Passive Microwave Techniques 362
5.5.3 Active Ground and Satellite Radar Technique 363
5.5.4 Severe Thunderstorms and Lighting 365
5.5.5 Advanced Global Distribution of Precipitation 366
5.6 Earth Radiation Budget 368
5.6.1 Solar Constant 368
5.6.2 Top of the Atmosphere Radiation Budget 369
5.6.3 Surface Radiation Budget 371
5.7 Measurements and Monitoring of Other Earth Observation Parameters 373
5.7.1 Hydrology Analyzes and Measuring 373
5.7.2 Sea Waves and Ocean Dynamic Measuring 374
5.7.3 Sea Surface Temperature Measuring 376
5.7.4 Sea Pollution and Ecosystem Monitoring 377
5.7.5 Cryosphere Detection and Monitoring 377
5.7.6 Agricultural and Forestry Landscape Monitoring 379
5.7.7 Global Land Cover Mapping 380
5.7.8 Desertification Monitoring and Mapping 381
Chapter 6: Satellite Meteorological Instruments 383
6.1 Introduction to PEO Satellite Meteorological System 383
6.2 Meteorological Instruments Onboard POES Satellites 386
6.2.1 Advanced Very High Resolution Radiometer 387
6.2.2 High Resolution Infrared Radiation Sounder 391
6.2.3 Advanced Microwave Sounding Unit 395
6.2.4 Solar Backscatter Ultraviolet Radiometer 398
6.2.5 Space Environment Monitor 400
6.2.6 Search and Rescue Satellite Repeater and Processor 400
6.2.7 Digital Tape Recorder and Solid State Recorder 401
6.3 Meteorological Instruments Onboard European PEO Satellites 402
6.3.1 Microwave Humidity Sounder 404
6.3.2 Infrared Atmospheric Sounding Interferometer 406
6.3.3 Global Ozone Monitoring Experiemnt-2 410
6.3.4 Global Navigation Satellite System Receiver for Atmospheric Sounding 412
6.3.5 Advanced Scatterometer 416
6.4 Introduction to GEO Satellite Meteorological System 420
6.5 Meteorological Instruments Onboard GOES Satellites 421
6.5.1 GOES 4-7 (D-H) Instruments 422
6.5.2 GOES 8-12 (l-M) Instruments 426
6.5.2.1 GOES 8-12 (l-M) Imager Instrument 426
6.5.2.2 GOES 8-12 (l-M) Sounder Instrument 428
6.5.3 GOES 13-15 (N-P) Instruments 429
6.5.4 GOES 16-19 (R-U) Instruments 435
6.5.4.1 Earth Facing Instruments (EFI) 437
6.5.4.2 Sun Facing Instruments (SFI) 442
6.5.4.3 Space Environment Instruments (SEI) 444
6.5.4.4 Unique Payload Services (UPS) 446
6.6 Other GEO Satellite Instruments 449
6.6.1 European Meteosat Instruments 450
6.6.2 Russian Electro Instruments 455
6.6.3 Chinese Feng-Yun Instruments 458
6.6.4 Indian INSAT Instruments 459
6.6.5 Japanese GMS Instruments 459
Chapter 7: Antenna Systems and Propagation 460
7.1 Evolution of Antenna Systems for Radio Communications 461
7.1.1 Overview of Antennas for Radio and Satellite Communications 461
7.1.2 Satellite Antennas Geometry 462
7.1.3 Antennas Requirements and Technical Characteristics 464
7.2 Basic Relations of Antennas 464
7.2.1 Frequency and Bandwidth in Meteorological Satellite Communications 465
7.2.2 Gain and Directivity 466
7.2.3 Radiation Pattern, Beamwidth and Sidelobes 468
7.2.4 Polarization and Axial Ratio 471
7.2.5 Figure of Merit (G/T) and EIRP 472
7.2.6 Classification of Satellite Antennas 474
7.3 Omnidirectional Low-Gain Antennas (LGA) 474
7.3.1 Quadrifilar Helix Antenna (QHA) 475
7.3.2 Crossed-Drooping Dipole Antenna (CDDA) 476
7.3.3 Microstrip Patch Antenna (MPA) 476
7.4 Directional Medium-Gain Antennas (MGA) 477
7.4.1 Aperture Reflector Antennas 477
7.4.1.1 Short Backfire (SBF) Plane Reflector Antenna 477
7.4.1.2 Modified SBF Plane Reflector Antenna 479
7.4.1.3 Improved SBF Conical Reflector Antenna 479
7.4.2 Wire Antennas 480
7.4.2.1 Helical Wire Antennas 480
7.4.2.2 Inverted V-Form Cross Dipole Antenna 481
7.4.2.3 Crossed-Slot Antenna 482
7.4.2.4 Conical Spiral Antenna 482
7.4.2.5 Planar Spiral Antennas 483
7.4.3 Array Antennas 485
7.4.3.1 Microstrip Array Antenna 485
7.4.3.2 Cross-Slot Array Antenna 485
7.4.3.3 Cross-Dipole Array Antenna 486
7.4.3.4 Four-Element Array Antennas 486
7.4.3.5 Spiral Array Antenna 487
7.4.3.6 Patch Array Antennas 488
7.5 High-Gain Directional Aperture Antennas 489
7.5.1 Parabolic Dish Antenna 490
7.5.2 Parabolic Dish Antenna in Radome 491
7.5.3 Parabolic Umbrella Antenna 491
7.5.4 Horn Antennas 492
7.5.4.1 Pyramidal Horn Antenna 492
7.5.4.2 E-Plane Horn Antenna 493
7.5.4.3 H-Plane Horn Antenna 493
7.5.4.4 Conical Horn Antenna 494
7.6 Ground Antennas for Particular Satellite Meteorological Systems 494
7.6.1 Direct Readout PEO Directional Ground Antenna Systems (GAS) 495
7.6.1.1 Tracking PEO Satellite L-Band GES Receiving Antenna 495
7.6.1.2 Tracking PEO Satellite Multi-Band GES Receiving Antenna 497
7.6.1.3 Tracking PEO X/Y Satellite L/S/X-Band GES Receiving Antenna 498
7.6.1.4 Tracking PEO MEOS Satellite GES Receiving L/S/X-Band Antenna 499
7.6.1.5 Tracking PEO Satellite GES Receiving L/S-Band Antenna 500
7.6.2 Direct Readout PEO Multidirectional Ground Antenna Systems (GAS) 502
7.6.2.1 Omnidirectional Direct Readout PEO Satellite Antennas 503
7.6.2.2 Directional Direct Readout PEO Satellite Antennas 505
7.6.3 Direct Readout GEO Directional Ground Antenna Systems (GAS) 507
7.6.3.1 Tracking GEO Satellite GES Receiving L/C/Ku-Band Antenna 508
7.6.3.2 Tracking GEO Satellite GES Receiving L/S/X-Band Antenna 509
7.6.3.3 Tracking GEO Satellite GES Receiving LRIT/HRIT L-Band Antenna 510
7.6.3.4 Tracking GEO Satellite GES Receiving LRIT/HRIT C-Band Antenna 511
7.6.3.5 Tracking GEO Satellite GES Receiving LRIT/HRIT Ku-Band Antenna 512
7.6.4 Meteocast Direct Readout GEO DVB-RCS GES Antenna Systems 513
7.6.4.1 Meteocast Forward DVB-RCS Uplink Antenna Systems 515
7.6.4.2 Meteocast Return DVB-RCS Downlink Antenna Systems 519
7.6.5 Meteocast Receiving Broadcasting GEO DVB-RCS Antennas 521
7.6.6 User Earth Stations (UES) Antennas Onboard Mobiles 522
7.6.6.1 Shipboard Satellite WDS Receiving 0.61 m L/S-Band Antenna 523
7.6.6.2 Shipboard Satellite Weather Receiving 1.5 m L/S-Band Antenna 524
7.6.6.3 Shipboard Satellite Weather Receiving 2.4 m L/S/X-Band Antenna 526
7.6.6.4 Antennas for TeraScan Satellite Acquisition System (TacSAS) 528
7.6.6.5 Land HRPT/AHRPT Antenna System 529
7.6.6.6 Marine HRPT/AHRPT Antenna System 530
7.6.6.7 GEO Data Collection Platform (DCP) with Antenna 531
7.7 Propagation and Interference Consideration 532
7.7.1 Radiowave Propagation 533
7.7.2 Propagation Loss in Free Space 534
7.7.3 Atmospheric Effects on Propagation 535
7.7.4 Propagation Effects of the Troposphere 536
7.7.4.1 Attenuation due to Atmospheric Gases 536
7.7.4.2 Attenuation by Precipitation and Hydrometeors 537
7.7.4.3 Site Diversity Factors 540
7.7.5 Clear-Sky Effects on Atmospheric Propagation 541
7.7.6 Transionospheric Propagation 542
7.7.6.1 Faraday Rotation and Group Delay 542
7.7.6.2 Ionospheric Scintillation 544
7.7.6.3 Other Ionospheric Effects 545
7.7.6.4 Sky Noise Temperature Contributions 545
7.7.6.5 Environmental Noise Temperature Sources 546
7.7.6.6 Atmospheric Noise Temperature Elements 547
7.7.6.7 Galactic and Other Interplanetary Noise Effects 547
7.7.7 Path Depolarization Causes 548
7.7.7.1 Depolarization and Polarization Components 548
7.7.7.2 Relation between Depolarization and Attenuation 550
7.7.8 Surface Reflection and Local Environmental Effects 551
7.7.9 Reflection from the Earth´s Surface 551
Bibliography 553
1. Books 553
2. Papers 556
3. Manuals 557
4. Brochures 559
5. Web Sites 561

Erscheint lt. Verlag 11.10.2017
Zusatzinfo XXVI, 546 p. 220 illus., 148 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Mathematik / Informatik Informatik
Naturwissenschaften Physik / Astronomie Astronomie / Astrophysik
Technik Elektrotechnik / Energietechnik
Technik Nachrichtentechnik
Schlagworte Antenna and propagation technique • Ground infrastructures implemented in satellite meteorology • Meteorological satellites • meteorology • Space segment • Transmission • User Infrastructures Implemented In Satellite Meteorology
ISBN-10 3-319-67119-7 / 3319671197
ISBN-13 978-3-319-67119-2 / 9783319671192
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 19,3 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Ein Grundkurs

von Alfred Weigert; Heinrich J. Wendker; Lutz Wisotzki

eBook Download (2024)
Wiley-VCH (Verlag)
52,99
Ein Grundkurs

von Alfred Weigert; Heinrich J. Wendker; Lutz Wisotzki

eBook Download (2024)
Wiley-VCH (Verlag)
52,99