Multimodal Neuroimaging Computing for the Characterization of Neurodegenerative Disorders - Sidong Liu

Multimodal Neuroimaging Computing for the Characterization of Neurodegenerative Disorders (eBook)

(Autor)

eBook Download: PDF
2017 | 1st ed. 2017
XXV, 136 Seiten
Springer Singapore (Verlag)
978-981-10-3533-3 (ISBN)
Systemvoraussetzungen
96,29 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This thesis covers various facets of brain image computing methods and illustrates the scientific understanding of neurodegenerative disorders based on four general aspects of multimodal neuroimaging computing: neuroimaging data pre-processing, brain feature modeling, pathological pattern analysis, and translational model development. It demonstrates how multimodal neuroimaging computing techniques can be integrated and applied to neurodegenerative disease research and management, highlighting relevant examples and case studies. Readers will also discover a number of interesting extension topics in longitudinal neuroimaging studies, subject-centered analysis, and the brain connectome. As such, the book will benefit all health informatics postgraduates, neuroscience researchers, neurology and psychiatry practitioners, and policymakers who are interested in medical image computing and computer-assisted interventions.





Sidong Liu received his Bachelor Degree in Bioinformatics from Harbin Institute of Technology (HIT) in 2007. He then obtained a Master of Applied Science with a major in Bioinformatics in 2009, and a Master of IT with a major in Computer Science at the University of Sydney. He conducted his PhD study with a focus on medical image computing in the Biomedical and Multimedia Information Technology(BMIT) Research Group at the School of Information Technologies, the University of Sydney.
During his PhD study, supported by an Australian Postgraduate Award (APA),
Australia Alzheimer's Disease Research Foundation (AADRF) Top-up Scholarship
and Australia Sydney University Graduates Union North America (SUGUNA) Travel
Grant, he spent one year at the Surgical Planning Laboratory (SPL), Harvard Medical School, as a visiting scholar in 2014. He was awarded a PhD Degree in Dec 2015, and his PhD thesis has received the Springer Thesis Award. He is currently a postdoctoral research fellow with School of Information Technologies, the University of Sydney. His research interests include neuroimage computing, computational neuroscience, biomedical and health informatics, machine learning and big data analytics and its applications in biomedicine.

This thesis covers various facets of brain image computing methods and illustrates the scientific understanding of neurodegenerative disorders based on four general aspects of multimodal neuroimaging computing: neuroimaging data pre-processing, brain feature modeling, pathological pattern analysis, and translational model development. It demonstrates how multimodal neuroimaging computing techniques can be integrated and applied to neurodegenerative disease research and management, highlighting relevant examples and case studies. Readers will also discover a number of interesting extension topics in longitudinal neuroimaging studies, subject-centered analysis, and the brain connectome. As such, the book will benefit all health informatics postgraduates, neuroscience researchers, neurology and psychiatry practitioners, and policymakers who are interested in medical image computing and computer-assisted interventions.<

Sidong Liu received his Bachelor Degree in Bioinformatics from Harbin Institute of Technology (HIT) in 2007. He then obtained a Master of Applied Science with a major in Bioinformatics in 2009, and a Master of IT with a major in Computer Science at the University of Sydney. He conducted his PhD study with a focus on medical image computing in the Biomedical and Multimedia Information Technology(BMIT) Research Group at the School of Information Technologies, the University of Sydney.During his PhD study, supported by an Australian Postgraduate Award (APA),Australia Alzheimer’s Disease Research Foundation (AADRF) Top-up Scholarshipand Australia Sydney University Graduates Union North America (SUGUNA) TravelGrant, he spent one year at the Surgical Planning Laboratory (SPL), Harvard Medical School, as a visiting scholar in 2014. He was awarded a PhD Degree in Dec 2015, and his PhD thesis has received the Springer Thesis Award. He is currently a postdoctoral research fellow with School of Information Technologies, the University of Sydney. His research interests include neuroimage computing, computational neuroscience, biomedical and health informatics, machine learning and big data analytics and its applications in biomedicine.

Introduction.- Background.- Datasets and Pre-processing.- Neurodegenerative Feature Modeling and Learning.- Neurodegenerative Pattern Analysis.- Alzheimer’s Disease Staging and Prediction.- Neuroimaging Content-Based Retrieval.- Conclusions and Future Directions.

Erscheint lt. Verlag 11.1.2017
Reihe/Serie Springer Theses
Springer Theses
Zusatzinfo XXV, 136 p. 35 illus., 14 illus. in color.
Verlagsort Singapore
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Betriebssysteme / Server
Informatik Grafik / Design Digitale Bildverarbeitung
Informatik Software Entwicklung User Interfaces (HCI)
Mathematik / Informatik Informatik Theorie / Studium
Naturwissenschaften Biologie Humanbiologie
Naturwissenschaften Biologie Zoologie
Technik Elektrotechnik / Energietechnik
Schlagworte ADNI Datasets • Biomedical Pattern Analysis • Brain Connectome • Brain Function Mapping • Brain Image Analysis • brain informatics • Computer-aided Diagnosis • Medical Image Computing • Neurodegenerative Patterns • Neuroimaging Content-Based Retrieval • representation learning
ISBN-10 981-10-3533-4 / 9811035334
ISBN-13 978-981-10-3533-3 / 9789811035333
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 5,8 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Discover the smart way to polish your digital imagery skills by …

von Gary Bradley

eBook Download (2024)
Packt Publishing (Verlag)
29,99
Explore powerful modeling and character creation techniques used for …

von Lukas Kutschera

eBook Download (2024)
Packt Publishing (Verlag)
43,19
Generate creative images from text prompts and seamlessly integrate …

von Margarida Barreto

eBook Download (2024)
Packt Publishing (Verlag)
32,39