Science of Synthesis Knowledge Updates 2012 Vol. 4 (eBook)

eBook Download: EPUB
2014 | 1. Auflage
548 Seiten
Thieme (Verlag)
978-3-13-178871-9 (ISBN)

Lese- und Medienproben

Science of Synthesis Knowledge Updates 2012 Vol. 4 -
Systemvoraussetzungen
2.799,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Science of Synthesis is a reference work for preparative methods in synthetic chemistry. Its product-based classification system enables chemists to easily find solutions to their synthetic problems.

Key Features:

  • Critical selection of reliable synthetic methods, saving the researcher the time required to find procedures in the primary literature.
  • Expertise provided by leading chemists.
  • Detailed experimental procedures.
  • The information is highly organized in a logical format to allow easy access to the relevant information.

The Science of Synthesis Editorial Board, together with the volume editors and authors, is constantly reviewing the whole field of synthetic organic chemistry as presented in Science of Synthesis and evaluating significant developments in synthetic methodology. Four annual volumes updating content across all categories ensure that you always have access to state-of-the-art synthetic methodology.

Science of Synthesis: Knowledge Updates 2012/4 1
Title page 5
Imprint 7
Preface 8
Abstracts 10
Overview 16
Table of Contents 18
Volume 1: Compounds with Transition Metal--Carbon p-Bonds and Compounds of Groups 10–8 (Ni, Pd, Pt, Co, Rh, Ir, Fe, Ru, Os) 30
1.2 Product Class 2: Organometallic Complexes of Palladium 30
1.2.5 Product Subclass 5: Palladium(III)-Containing Complexes 30
1.2.5.1 Synthesis of Palladium(III)-Containing Complexes 30
1.2.5.1.1 Mononuclear Palladium(III) Complexes 30
1.2.5.1.1.1 Method 1: Disproportionation of Palladium(II) Complexes 31
1.2.5.1.1.2 Method 2: Oxidation of Palladium(II) Complexes with Perchloric Acid 31
1.2.5.1.1.3 Method 3: Electrochemical Oxidation of Palladium(II) Complexes 32
1.2.5.1.1.4 Method 4: Oxidation of Palladium(II) with Single-Electron Oxidants 33
1.2.5.1.1.5 Method 5: Oxidation of Palladium(II) Complexes with Oxygen 33
1.2.5.1.2 Binuclear Palladium(III) Complexes without a Pd--Pd Bond 34
1.2.5.1.2.1 Method 1: Electrochemical Oxidation 34
1.2.5.1.2.2 Method 2: Comproportionation of Palladium(II) and Palladium(IV) Complexes 35
1.2.5.1.3 Binuclear Palladium(2.5) Complexes with a Pd--Pd Bond Order of 0.5 36
1.2.5.1.3.1 Method 1: Binuclear Palladium(2.5) Complexes by Electrochemical Oxidation 36
1.2.5.1.3.2 Method 2: Binuclear Palladium(2.5) Complexes Using Single-Electron Oxidants 37
1.2.5.1.4 Tetrabridged Binuclear Palladium(III) Complexes with a Pd--Pd Bond 38
1.2.5.1.4.1 Method 1: Binuclear Palladium(III) Complexes by Oxidation with Hypervalent Iodine 38
1.2.5.1.4.2 Method 2: Inorganic Binuclear Palladium(III) Complexes via Ligand Metathesis 39
1.2.5.1.4.3 Method 3: Organometallic Tetrabridged Binuclear Palladium(III) Complexes 39
1.2.5.1.5 Binuclear Palladium(III) Complexes Supported by Two Bridging Ligands 41
1.2.5.1.5.1 Method 1: Oxidation with Hypervalent Iodine Reagents 41
1.2.5.1.5.2 Method 2: Oxidation with Peroxides 42
1.2.5.1.5.3 Method 3: Oxidation with Halogens 42
1.2.5.1.6 Unbridged Pd(III)--Pd(III) Bonds 43
1.2.5.1.6.1 Method 1: Oxidation of Acetate-Bridged Binuclear Palladium(III) Complexes with Xenon Difluoride 43
1.2.5.2 Stoichiometric Organometallic Chemistry of Isolated Palladium(III) Complexes 45
1.2.5.2.1 Organometallic Chemistry of Mononuclear Palladium(III) Complexes 45
1.2.5.2.1.1 Method 1: C--C Bond-Forming Reactions of Mononuclear Palladium(III) Complexes 45
1.2.5.2.1.2 Method 2: C--C Bond-Forming Reactions Initiated by Ligation of Anionic Donors 47
1.2.5.2.2 Organometallic Chemistry of Binuclear Palladium(III) Complexes 48
1.2.5.2.2.1 Method 1: C--X Bimetallic Reductive Elimination from Binuclear Palladium(III) Complexes 48
1.2.5.3 Organometallic Reactions Proposed To Proceed via Unobserved Mononuclear Palladium(III) Intermediates 48
1.2.5.3.1 Method 1: C--C Bond-Forming Reactions Initiated by One-Electron Oxidation of Mononuclear Palladium(II) Complexes 48
1.2.5.3.2 Method 2: Oxygen-Insertion Reactions 49
1.2.5.4 Binuclear Palladium(III) in the Synthesis of Mononuclear Palladium(IV) Complexes 51
1.2.5.4.1 Method 1: Pd--Pd Heterolysis in Trifluoromethylation 51
1.2.5.4.2 Method 2: Heterolysis of Unbridged Pd(III)--Pd(III) Bonds 52
1.2.5.5 Proposed Catalysis via Mononuclear Palladium(III) Intermediates 53
1.2.5.5.1 Method 1: Kharasch Reaction 53
1.2.5.6 Catalysis via Proposed Binuclear Palladium(III) Intermediates 54
1.2.5.6.1 Method 1: Binuclear Palladium(III) Intermediates in C--H Arylation 54
1.2.5.6.2 Method 2: Binuclear Palladium(III) Intermediates in C--H Chlorination 54
1.2.5.6.3 Method 3: Binuclear Palladium(III) Complexes in C--H Acetoxylation 55
1.2.5.6.4 Method 4: C--N Bond-Forming Reactions Initiated by One-Electron Oxidants 56
1.2.5.6.5 Method 5: Binuclear Catalysts for C--H Hydroxylation Chemistry 57
1.2.5.7 Binuclear Palladium(III) Precatalysts 58
1.2.5.7.1 Method 1: Alkene Diboration 58
Volume 2: Compounds of Groups 7–3 (Mn···, Cr···, V···, Ti···, Sc···, La···, Ac···) 62
2.10 Product Class 10: Organometallic Complexes of Titanium 62
2.10.20 Organometallic Complexes of Titanium (Update 2) 62
2.10.20.1 Titanium-Mediated Reductive Cross-Coupling Reactions (Intermolecular Metallacycle-Mediated C--C Bond Formation) 62
2.10.20.1.1 Method 1: Synthesis of Allylic Alcohols by Alkoxide-Directed Regioselective Coupling of Internal Alkynes with Aldehydes (Class I) 65
2.10.20.1.2 Method 2: Synthesis of Trisubstituted E-1,3-Dienes by Alkoxide-Directed Regioselective Coupling of Internal Alkynes with Terminal Alkynes (Class I) 71
2.10.20.1.3 Method 3: Synthesis of Tetrasubstituted 1,3-Dienes by Alkoxide-Directed Regioselective Cross-Coupling Reactions of Internal Alkynes (Class II) 75
2.10.20.1.4 Method 4: Titanium Alkoxide Mediated Alkene–Alkyne Cross Coupling (Class II) 78
2.10.20.1.5 Method 5: Titanium Alkoxide Mediated Allylic Alcohol–Alkyne Cross Coupling (Class II) 82
2.10.20.1.6 Method 6: Alkoxide-Directed Coupling of Allylic Alcohols with Vinylsilanes (Class II) 91
2.10.20.1.7 Method 7: Alkoxide-Directed Coupling of Imines with Internal Alkynes (Class II) 93
2.10.20.1.8 Method 8: Alkoxide-Directed Coupling of Imines with Alkenes (Class II) 97
2.10.20.1.9 Method 9: Alkoxide-Directed Coupling of Imines with Allylic Alcohols (Class II) 108
2.10.20.1.10 Method 10: Allenes in Alkoxide-Directed Titanium-Mediated Reductive Cross Coupling (Class II) 116
2.10.20.1.11 Method 11: Alkoxide-Directed Coupling of Vinylcyclopropanes with Silyl-Substituted Ethene and Alkynes (Class II) 121
2.10.20.1.12 Method 12: Titanium-Mediated Cyclopropanation of Vinylogous Esters (Class I Alkoxide-Directed Reductive Cross Coupling) 122
2.13 Product Class 13: Organometallic Complexes of the Actinides 128
2.13.1 Product Subclass 1: Actinide–Cyclooctatetraene Complexes 129
Synthesis of Product Subclass 1 129
2.13.1.1 Method 1: Metathesis with Alkali Metal Salts 129
2.13.1.2 Method 2: Transmetalation with Magnesium Salts 131
2.13.1.3 Method 3: Electrolytic Amalgamation 131
2.13.1.4 Method 4: Reduction with Lithium Naphthalenide 132
2.13.1.5 Method 5: Redistribution 132
2.13.1.6 Method 6: Cyclooctatetraene-Bridged Actinide Complexes 133
Applications of Product Subclass 1 in Organic Synthesis 134
2.13.1.7 Method 7: Binding of Carbon Monoxide 134
2.13.2 Product Subclass 2: Actinide–Arene Complexes 136
Synthesis of Product Subclass 2 136
2.13.2.1 Method 1: Friedel–Crafts Route 136
2.13.2.2 Method 2: Synthesis of Bimetallic Species 137
2.13.2.3 Method 3: Thermolysis of Uranium(IV) Borohydride 137
2.13.2.4 Method 4: Synthesis of Bridged Uranium–Arene Complexes by Salt Metathesis 138
2.13.3 Product Subclass 3: Actinide–Cyclopentadienyl Complexes 139
Synthesis of Product Subclass 3 142
2.13.3.1 Method 1: Metathesis with Alkali Metal Salts 142
2.13.3.2 Method 2: Transmetalation 143
2.13.3.3 Method 3: Reduction of Tetravalent Actinide Precursors 144
2.13.3.3.1 Variation 1: Reduction with Sodium Hydride 144
2.13.3.3.2 Variation 2: Reduction with Alkali Metals 145
2.13.3.4 Method 4: Reaction with Tetramethylfulvene 146
Applications of Product Subclass 3 in Organic Synthesis 147
2.13.3.5 Method 5: Catalytic Reduction of Azides and Hydrazines 147
2.13.3.6 Method 6: Intermolecular Hydroamination of Terminal Alkynes 148
2.13.3.7 Method 7: Hydrosilylation of Terminal Alkynes 150
2.13.3.8 Method 8: Polymerization of a-Alkenes 152
2.13.3.9 Method 9: C--H Bond Activation 153
2.13.4 Product Subclass 4: Allyl- and Pentadienylactinide Complexes 154
Synthesis of Product Subclass 4 155
2.13.4.1 Method 1: Transmetalation with Grignard Reagents 155
2.13.4.2 Method 2: Metathesis with Alkali Metal Salts 156
2.13.5 Product Subclass 5: Alkylactinide Complexes 156
Synthesis of Product Subclass 5 157
2.13.5.1 Method 1: Metathesis with Alkali Metal Salts 157
2.13.5.2 Method 2: Application of Stabilizing Phosphine Ancillary Ligands 157
2.13.6 Product Subclass 6: Actinide–Carbene Complexes 158
Synthesis of Product Subclass 6 159
2.13.6.1 Method 1: Metathesis with Alkali Metal Salts 159
2.13.6.2 Method 2: Ligand Redistribution 160
2.13.7 Product Subclass 7: Oxygen-Ligand Complexes of Actinide Systems 161
Synthesis of Product Subclass 7 161
2.13.7.1 Method 1: Ligand Substitution 161
2.13.7.1.1 Variation 1: Nucleophilic Displacement of Halides 161
2.13.7.1.2 Variation 2: By Ligand Redistribution 162
Applications of Product Subclass 7 in Organic Synthesis 164
2.13.7.2 Method 2: Molecular Nitrogen Reduction 164
2.13.8 Product Subclass 8: Nitrogen-Ligand Complexes of Actinide Systems 165
Synthesis of Product Subclass 8 165
2.13.8.1 Method 1: Formation of Actinide Amide Complexes 165
2.13.8.1.1 Variation 1: Homoleptic Actinide Amide Formation by Nucleophilic Halide Displacement 165
2.13.8.1.2 Variation 2: Heteroleptic Actinide Amide Synthesis by Nucleophilic Halide Displacement 167
2.13.8.1.3 Variation 3: Reaction of Organoactinide Species with Nitriles and Thiocyanates 170
2.13.8.2 Method 2: Formation of Actinide Imides 173
2.13.8.2.1 Variation 1: By Oxidation of the Actinide Center 173
2.13.8.2.2 Variation 2: By Reductive Cleavage with Amines and Hydrazines 175
2.13.8.2.3 Variation 3: By Reductive Cleavage with Azides and Diazenes 176
2.13.8.3 Method 3: Synthesis of Actinide Amidinate Complexes 178
2.13.8.3.1 Variation 1: By Reaction of Actinide Halides with Lithium Amidinates 178
2.13.8.3.2 Variation 2: By Carbodiimide Insertion 180
2.13.8.4 Method 4: Synthesis of Actinide Complexes Bearing N-Heterocyclic Ligands 182
2.13.8.4.1 Variation 1: Actinide Complexes Bearing Pyrrolyl Ligands and Polypyrrole Macrocycles 182
2.13.8.4.2 Variation 2: Organoactinide Complexes Bearing Pyrazole and Imidazole Functionality 184
2.13.8.4.3 Variation 3: Pyridine-Stabilized Organoactinide Systems 185
2.13.8.5 Method 5: Actinide Complexes Bearing Ketimide Ligands 187
Applications of Product Subclass 8 in Organic Synthesis 188
2.13.8.6 Method 6: Binding of Carbon Dioxide 188
2.13.8.7 Method 7: Oligomerization of e-Caprolactone 189
2.13.8.8 Method 8: Dehydrogenative Coupling of Amines with Silanes 190
2.13.8.9 Method 9: Catalytic Hydrosilylation of Alkynes 191
2.13.8.10 Method 10: Binding of Molecular Nitrogen 192
2.13.8.11 Method 11: Alkene Polymerization 193
2.13.9 Product Subclass 9: Sulfur- and Phosphorus-Ligand Complexes of Actinide Systems 194
Synthesis of Product Subclass 9 194
2.13.9.1 Method 1: Synthesis of Organoactinide Complexes Bearing Sulfur Ligands 194
2.13.9.1.1 Variation 1: Formation of Actinide Thiolate Complexes by Coordinative Insertion 194
2.13.9.1.2 Variation 2: Formation of Actinide Thiolate Complexes by Nucleophilic Halide Displacement 195
2.13.9.2 Method 2: Synthesis of Organoactinide Complexes Bearing Phosphorus Ligands 196
2.13.9.2.1 Variation 1: Formation of Actinide–Phospholyl Complexes 196
2.13.9.2.2 Variation 2: Reactions Forming Actinide–Phosphine Complexes 197
2.13.9.2.3 Variation 3: Reactions Forming Actinide–Phosphine Oxide Complexes 198
2.13.9.2.4 Variation 4: Reactions Forming Actinide–Phosphoranimide Complexes 199
2.13.10 Product Subclass 10: Organoactinide Complexes Bearing Bridged Ligands 200
Synthesis of Product Subclass 10 201
2.13.10.1 Method 1: Organoactinide Complexes Bearing Bridged Ligands 201
2.13.10.1.1 Variation 1: Carbon-Bridged Ancillary Ligand Complexes of the Actinides 201
2.13.10.1.2 Variation 2: Nitrogen-Bridged Ancillary Ligand Complexes of the Actinides 203
2.13.10.1.3 Variation 3: Oxygen-Bridged Ancillary Ligand Complexes of the Actinides 206
2.13.10.1.4 Variation 4: Silicon-Bridged Ancillary Ligand Complexes of the Actinides 207
Applications of Product Subclass 10 in Organic Synthesis 209
2.13.10.2 Method 2: Catalytic Intramolecular Hydroamination/Cyclization Mediated by Constrained-Geometry Actinide Complexes 209
2.13.10.3 Method 3: Intermolecular Hydrosilylation with Phenylsilane Mediated by Constrained-Geometry Thorium Complexes 211
2.13.10.4 Method 4: Intermolecular Hydrothiolation 214
2.13.11 Product Subclass 11: Multimetallic Actinide Complexes 215
Synthesis of Product Subclass 11 215
2.13.11.1 Method 1: Homobimetallic Actinide Complexes 215
2.13.11.1.1 Variation 1: Nitrogen-Bridged Homobimetallic Actinide Complexes 215
2.13.11.1.2 Variation 2: Halogen-Bridged Homobimetallic Actinide Complexes 217
2.13.11.1.3 Variation 3: Oxygen-Bridged Homobimetallic Complexes 218
2.13.11.1.4 Variation 4: Carbide-Bridged Homobimetallic Actinide Complexes 220
2.13.11.2 Method 2: Heterobimetallic Complexes 220
2.13.11.2.1 Variation 1: Hydride-Bridged Heterobimetallic Complexes 221
2.13.11.2.2 Variation 2: Phosphorus-Bridged Heterobimetallic Actinide Complexes 222
2.13.11.2.3 Variation 3: Heterobimetallic Actinide–Ferrocenyl Complexes 222
2.13.11.2.4 Variation 4: Heterobimetallic Actinide Complexes with Unsupported Metal--Metal Bonds 223
2.13.11.2.5 Variation 5: Heterobimetallic Nitrogen-Bridged Actinide Complexes 224
Applications of Product Subclass 11 in Organic Synthesis 225
2.13.11.3 Method 3: Reversible Carbon--Carbon Coupling 225
2.13.11.4 Method 4: Inter- and Intramolecular Hydroamination 227
2.13.11.5 Method 5: s-Bond Metathesis of Silylalkynes 229
Volume 4: Compounds of Group 15 (As, Sb, Bi) and Silicon Compounds 242
4.4 Product Class 4: Silicon Compounds 242
4.4.3 Product Subclass 3: Silylenes 242
Synthesis of Product Subclass 3 244
4.4.3.1 Method 1: Reduction of Dihalosilanes 244
4.4.3.2 Method 2: Reduction of Trichlorosilanes or Silicon Tetrachloride 256
4.4.3.3 Method 3: Reaction of a Silyliumylidene Cation 258
4.4.3.4 Method 4: Dehydrochlorination of Hydrochlorosilanes 260
Applications of Product Subclass 3 in Organic Synthesis 263
4.4.3.5 Method 5: Insertion Reactions 263
4.4.3.6 Method 6: Addition Reactions to 1,3-Dienes 284
4.4.3.7 Method 7: Addition Reactions to Aldehydes, Ketones, and Imines 289
4.4.3.8 Method 8: Addition Reactions to Alkynes and Cyanides 293
4.4.3.9 Method 9: Addition Reactions to Isocyanides and Azides 295
4.4.3.10 Method 10: Addition Reactions to Alkenes and Silenes 301
4.4.3.11 Method 11: Reactions with Carbenes and 4-(Dimethylamino)pyridine 302
4.4.3.12 Method 12: Reactions with Elemental Chalcogens or Phosphorus 303
4.4.3.13 Method 13: Reactions with Transition Metals 310
Volume 6: Boron Compounds 326
6.1 Product Class 1: Boron Compounds 326
6.1.28.24 Vinylboranes 326
6.1.28.24.1 Synthesis of Vinylboranes 326
6.1.28.24.1.1 Method 1: Insertion of Borylenes into C--H Bonds 327
6.1.28.24.1.2 Method 2: Dimetalation of Allenes and Alkynes 327
6.1.28.24.1.2.1 Variation 1: Palladium-Catalyzed Enantioselective Diboration of Allenes 327
6.1.28.24.1.2.2 Variation 2: Silaboration of Alkynes 329
6.1.28.24.1.2.3 Variation 3: Silaboration of Allenes 331
6.1.28.24.1.2.4 Variation 4: Silaborative C--C Cleavage Reactions of Methylenecyclopropanes 335
6.1.28.24.1.2.5 Variation 5: Copper-Catalyzed Addition of Diboron Reagents to Alkynes 337
6.1.28.24.1.3 Method 3: Transmetalation of Vinylic Metal Complexes with Boron Reagents 339
6.1.28.24.1.3.1 Variation 1: Copper Hydride Catalyzed Addition of Pinacolborane to Acetylenic Esters 339
6.1.28.24.1.3.2 Variation 2: Transmetalation of Vinylaluminums 340
6.1.28.24.1.3.3 Variation 3: Transmetalation of Cyclic Vinyllithium Compounds 342
6.1.28.24.1.3.4 Variation 4: Palladium-Catalyzed Borylation of Vinyl Halides 342
6.1.28.24.1.4 Method 4: Carboboration of Alkynes 342
6.1.28.24.1.5 Method 5: Miscellaneous Methods 345
6.1.28.24.1.5.1 Variation 1: Protodeboronation of Alkenyl Geminal Diboron Species 345
6.1.28.24.1.5.2 Variation 2: Stereoselective Synthesis of Tetrasubstituted Vinylboronates 346
6.1.28.24.2 Applications of Vinylboranes in Organic Synthesis 347
6.1.28.24.2.1 Method 1: Reduction of Double Bonds 347
6.1.28.24.2.2 Method 2: Synthesis of Cyclopropylboronates and Oxiran-2-ylboronates 348
6.1.28.24.2.3 Method 3: Cycloadditions 350
6.1.28.24.2.4 Method 4: Heck Reactions 352
6.1.28.24.2.5 Method 5: Substitution Reactions 353
6.1.28.24.2.5.1 Variation 1: Vinylogous Intramolecular Alkyl-Transfer Reactions 353
6.1.28.24.2.5.2 Variation 2: Reactions of Borylated Allylic Reagents 354
6.1.28.24.2.6 Method 6: Formation of Carbon--Halogen Bonds 357
6.1.28.24.2.6.1 Variation 1: Formation of a C--Cl Bond through Iodination of a Double Bond 357
6.1.28.24.2.6.2 Variation 2: Fluorination through Tandem Transmetalation–Fluorination 358
6.1.28.24.2.7 Method 7: Formation of C--N Bonds 359
6.1.28.24.2.7.1 Variation 1: Chan–Lam–Evans Cross Coupling 359
6.1.28.24.2.7.2 Variation 2: Formation of Imines 359
6.1.28.24.2.8 Method 8: Formation of C--O Bonds 360
6.1.28.24.2.9 Method 9: Formation of C--S and C--Se Bonds 361
6.1.28.24.2.10 Method 10: Addition to Heteroatom--Carbon Double Bonds 362
6.1.28.24.2.11 Method 11: Addition to Carbon--Carbon Multiple Bonds 364
6.1.28.24.2.12 Method 12: Homocoupling of Vinylboranes 364
6.1.28.24.2.13 Method 13: Cross Coupling of Vinylboranes 365
Volume 9: Fully Unsaturated Small-Ring Heterocycles and Monocyclic Five-Membered Hetarenes with One Heteroatom 370
9.14 Product Class 14: Phospholes 370
9.14.4 Phospholes 370
9.14.4.1 .3-1H-Phospholes 370
9.14.4.1.1 Synthesis by Ring-Closure Reactions 370
9.14.4.1.1.1 By Formation of Two P--C Bonds 370
9.14.4.1.1.1.1 Method 1: Reaction of Primary Phosphines with Diynes 370
9.14.4.1.1.2 By Formation of One C--C Bond 371
9.14.4.1.1.2.1 Method 1: Ring Closure of Dialk-1-ynylphosphines 371
9.14.4.1.2 Synthesis by Ring Transformation 372
9.14.4.1.2.1 Method 1: Reaction of Dihalophosphines with Zirconacyclopentadienes 372
9.14.4.1.2.1.1 Variation 1: Reaction of Zirconacyclopentadienes with Iodine, Butyllithium, and Dihalophosphines 373
9.14.4.1.2.1.2 Variation 2: Reaction of Zirconacyclopentadienes with Copper(I) Chloride and Dihalophosphines 374
9.14.4.1.2.1.3 Variation 3: Reaction of Dihalophosphines with Titanacyclopentadienes 374
9.14.4.1.3 Aromatization 375
9.14.4.1.3.1 Method 1: Dehydrohalogenation of 1-Halodihydrophospholium Ions 375
9.14.4.1.4 Synthesis by Substituent Modification 376
9.14.4.1.4.1 Method 1: Reaction of Electrophiles with Phospholide Ions 376
9.14.4.1.4.2 Method 2: Reaction of Nucleophiles with Phospholes 378
9.14.4.1.4.3 Method 3: Electrophilic Functionalization of Phospholes 380
9.14.4.1.4.4 Method 4: Transformation of a-Substituents 380
9.14.4.1.4.5 Method 5: Reduction of .5-Phospholes 382
9.14.4.2 Phospholide Ions 383
9.14.4.2.1 Method 1: Cleavage of the Exocyclic P--R Bond of 1H-Phospholes by Alkali Metals 383
9.14.4.2.1.1 Variation 1: Cleavage of the Exocyclic P--C Bond of 1H-Phospholes by Bases 383
9.14.4.2.1.2 Variation 2: Deprotonation of Transient 2H-Phospholes 384
9.14.4.3 .5-Phospholyl Complexes 386
9.14.4.3.1 Method 1: Synthesis from .3-1H-Phospholes 386
9.14.4.3.2 Method 2: Synthesis from .3-2H-Phospholes 387
9.14.4.3.3 Method 3: Synthesis from Phospholide Ions 387
9.14.4.3.3.1 Variation 1: Via Intermediate 1-Stannylphospholes 388
9.14.4.3.4 Method 4: Electrophilic Functionalization 388
9.14.4.3.5 Method 5: Transformation of Substituents 388
Volume 40: Amines, Ammonium Salts, Amine N-Oxides, Haloamines, Hydroxylamines and Sulfur Analogues, and Hydrazines 394
40.1 Product Class 1: Amino Compounds 394
40.1.1.5.6 Transition-Metal-Catalyzed Functionalization of C(sp3)--H Bonds of Amines 394
40.1.1.5.6.1 Transition-Metal-Catalyzed Oxidation of a-C(sp3)--H Bonds of Tertiary N-Methylamines and Amides 395
40.1.1.5.6.1.1 Method 1: Ruthenium-Catalyzed Oxidation of Tertiary Amines 395
40.1.1.5.6.1.2 Method 2: Palladium-Catalyzed Acetoxylation of tert-Butoxycarbonyl-Protected N-Methylamines 398
40.1.1.5.6.2 Transition-Metal-Catalyzed Cross-Dehydrogenative Coupling Reactions of C(sp3)--H Bonds at the a-Position of Amines 400
40.1.1.5.6.2.1 Method 1: Transition-Metal-Catalyzed Alkynylation of a-C(sp3)--H Bonds of Tertiary Amines 401
40.1.1.5.6.2.1.1 Variation 1: Synthesis of Propargylamines by Copper(I)-Catalyzed Alkynylation of Tertiary Amines 401
40.1.1.5.6.2.1.2 Variation 2: Alkynylation of Tertiary Amines Catalyzed by Iron(II) Chloride 404
40.1.1.5.6.2.2 Method 2: Synthesis of ß-Amino Ketones (Mannich Products) by Transition-Metal-Catalyzed C(sp3)--H Bond Functionalization 406
40.1.1.5.6.2.2.1 Variation 1: Synthesis of ß-Amino Ketones Catalyzed by Copper Salts 406
40.1.1.5.6.2.2.2 Variation 2: Synthesis of ß-Amino Ketones (Mannich Products) Catalyzed by a Combination of a Transition-Metal Catalyst and an Organocatalyst 409
40.1.1.5.6.2.2.3 Variation 3: Synthesis of ß-Amino Ketones (Mannich Products) by Aerobic Oxidative Coupling of Tertiary Amines with Silyl Enol Ethers and Ketene Acetals 412
40.1.1.5.6.2.3 Method 3: Nitro-Mannich (Aza-Henry) Reaction via C(sp3)--H Functionalization 414
40.1.1.5.6.2.3.1 Variation 1: Copper-Catalyzed Cross-Dehydrogenative Coupling of Tertiary Amines and Nitroalkanes 414
40.1.1.5.6.2.3.2 Variation 2: Aza-Henry and Mannich Reaction by Platinum-Catalyzed Cross-Dehydrogenative Coupling of Tertiary Amines in the Absence of Oxidant 416
40.1.1.5.6.2.3.3 Variation 3: Aza-Henry (Nitro-Mannich) Reactions in the Presence of Ruthenium Complexes via Visible Light Photoredox Catalyzed C(sp3)--H Functionalization 420
40.1.1.5.6.2.4 Method 4: Transition-Metal-Catalyzed Oxidative a-Cyanation of Tertiary Amines 425
40.1.1.5.6.2.4.1 Variation 1: Aerobic Oxidative a-Cyanation of Tertiary Amines with Sodium Cyanide/Acetic Acid 425
40.1.1.5.6.2.4.2 Variation 2: a-Cyanation of Tertiary Amines with Sodium Cyanide/Acetic Acid in the Presence of Hydrogen Peroxide or tert-Butyl Hydroperoxide 428
40.1.1.5.6.2.4.3 Variation 3: a-Cyanation of Tertiary Amines Catalyzed by Gold Complexes under Acid-Free Conditions 430
40.1.1.5.6.2.5 Method 5: Iron(III)-Catalyzed Oxidative Allylation of a C--H Bond Adjacent to a Nitrogen Atom: Synthesis of Homoallyl Tertiary Amines 434
40.1.1.5.6.2.6 Method 6: Copper-Catalyzed Aerobic Phosphonation of C(sp3)--H Bonds 437
40.1.1.5.6.2.7 Method 7: Transition-Metal-Catalyzed (Het)Arylation of C(sp3)--H Bonds Adjacent to Nitrogen 438
40.1.1.5.6.2.7.1 Variation 1: Iron-Catalyzed Oxidative Coupling of Hetarenes and Tertiary N-Methylamines 439
40.1.1.5.6.2.7.2 Variation 2: Copper-Catalyzed Cross-Dehydrogenative Coupling Reaction of Tertiary Amines and Indoles Using tert-Butyl Hydroperoxide as Oxidant 441
40.1.1.5.6.2.7.3 Variation 3: Ruthenium-Catalyzed Cross-Dehydrogenative Coupling Reactions of Tertiary Amines and Indoles 443
40.1.1.5.6.2.7.4 Variation 4: Iron-Catalyzed Cross-Dehydrogenative Coupling Reactions of tert-Butoxycarbonyl-Protected 1,2,3,4-Tetrahydroisoquinoline and Indoles 446
40.1.1.5.6.2.7.5 Variation 5: Copper-Catalyzed Cross-Dehydrogenative Coupling Reaction of Hetarenes Using Air/Oxygen as Oxidant 447
40.1.1.5.6.2.7.6 Variation 6: Transition-Metal-Catalyzed Oxidative Coupling of Alkylamides with Electron-Rich (Het)Arenes 450
40.1.1.5.6.2.7.7 Variation 7: Copper-Catalyzed Oxidative Coupling of Tertiary Amines and Siloxyfurans 454
40.1.1.5.6.2.7.8 Variation 8: Dirhodium(II) Caprolactamate Catalyzed Oxidative Coupling of Tertiary Amines and Siloxyfurans 456
40.1.1.5.6.2.8 Method 8: Copper-Catalyzed Oxidative C(sp³)--H Bond Arylation with Arylboronic Acids (Petasis–Mannich Reaction) 458
40.1.1.5.6.2.9 Method 9: Synthesis of Nonnatural Amino Acids via Functionalization of a-C(sp3)--H Bonds of Tertiary Amines 460
40.1.1.5.6.2.9.1 Variation 1: Functionalization of Glycine Derivatives by Direct C--C Bond Formation 460
40.1.1.5.6.2.9.2 Variation 2: Cross-Dehydrogenative Coupling Reactions of Amino Acids and Ketones by Cooperative Transition-Metal and Amino Catalysis 465
40.1.1.5.6.2.10 Method 10: a-Functionalization of Nonactivated Aliphatic Amines in the Absence of Oxidant: Ruthenium-Catalyzed Alkynylations 467
40.1.1.5.6.3 Transition-Metal-Catalyzed Nonoxidative Functionalization of a-C(sp3)--H Bonds of Amines 469
40.1.1.5.6.3.1 Transition-Metal-Catalyzed Hydroaminoalkylation 470
40.1.1.5.6.3.1.1 Method 1: Transition-Metal-Catalyzed Intermolecular Hydroaminoalkylation of Unactivated Alkenes 470
40.1.1.5.6.3.1.1.1 Variation 1: Hydroaminoalkylation of Unactivated Alkenes with N-Alkylarylamines 470
40.1.1.5.6.3.1.1.2 Variation 2: Hydroaminoalkylation of Unactivated Alkenes with Dialkylamines 475
40.1.1.5.6.3.1.1.3 Variation 3: Hydroaminoalkylation with Secondary Amines: Enantioselective Synthesis of Chiral Amines 477
40.1.1.5.6.3.1.2 Method 2: Transition-Metal-Catalyzed Intramolecular C--H Activation of Primary and Secondary Amines 488
40.1.1.5.6.4 a-C(sp3)--H Bond Functionalization of Amines via Transition-Metal-Catalyzed Hydride Transfer Cyclization 493
40.1.1.5.6.4.1 Method 1: Coupling of Unactivated Alkynes and C(sp3)--H Bonds 493
40.1.1.5.6.4.1.1 Variation 1: Direct Coupling of Unactivated Alkynes and C(sp3)--H Bonds Catalyzed by Platinum(IV) Iodide 493
40.1.1.5.6.4.1.2 Variation 2: A Two-Step, One-Pot Gold-Catalyzed Cyclization of 1-(But-3-ynyl)piperidine Derivatives 495
40.1.1.5.6.4.2 Method 2: Coupling of Electron-Deficient Alkenes and a-C(sp3)--H Bonds of Amines 496
40.1.1.5.6.4.2.1 Variation 1: Enantioselective Synthesis of 1,2,3,4-Tetrahydroquinolines via Cobalt(II)-Catalyzed Tandem 1,5-Hydride Transfer/Cyclization 496
40.1.1.5.6.4.2.2 Variation 2: Gold-Catalyzed Enantioselective Functionalization of C(sp3)--H Bonds by Redox-Neutral Domino Reactions 500
40.1.1.5.6.5 Transition-Metal-Catalyzed a-Arylation of Saturated Amines 503
40.1.1.5.6.5.1 Method 1: C(sp3)--H Bond Arylation Directed by an Amidine Protecting Group: a-Arylation of Pyrrolidines and Piperidines 503
40.1.1.5.6.5.2 Method 2: Iron-Catalyzed Arylation at the a-Position of Aliphatic Amines 507
40.1.1.5.6.6 Remote Functionalization of Unactivated C(sp3)--H Bonds of Amines and Amides 509
40.1.1.5.6.6.1 Method 1: Palladium-Catalyzed Picolinamide-Directed Remote Arylation of Unactivated C(sp3)--H Bonds 509
40.1.1.5.6.6.2 Method 2: Synthesis of Fused Indolines by Palladium-Catalyzed Asymmetric C--C Coupling Involving an Unactivated Methylene Group at the Position ß to Nitrogen 513
40.1.1.5.6.6.3 Method 3: C(sp3)--H Bond Activation with Ruthenium(II) Catalysts and C3-Alkylation of Cyclic Amines 515
Author Index 524
Abbreviations 546
List of All Volumes 552

1.2.5 Product Subclass 5: Palladium(III)-Containing Complexes


D. C. Powers and T. Ritter

General Introduction


Compared with the chemistry of palladium in the 0, I, II, and IV oxidation states, organopalladium(III) chemistry is in its infancy, and complexes containing palladium in the III oxidation state are rare.[14] Recent studies have expanded the family of characterized palladium(III) complexes and have also begun to elucidate the potential roles of palladium(III) intermediates in catalysis. This section will review preparative methods for the synthesis of palladium(III) complexes and discuss reactions in which palladium(III) intermediates are proposed.

SAFETY:

The palladium complexes reported herein can be prepared using the standard precautions generally taken with other potentially hazardous substances found in a chemistry laboratory. Many of the reagents used to prepare palladium(III) complexes are strong oxidants, which can be particularly hazardous.

1.2.5.1 Synthesis of Palladium(III)-Containing Complexes


1.2.5.1.1 Mononuclear Palladium(III) Complexes

Mononuclear palladium(II) complexes are typically square planar whereas mononuclear palladium(IV) complexes are typically octahedral.[5] Based on the molecular orbital diagram in  Figure 1, mononuclear palladium(III) complexes are anticipated to be paramagnetic, low-spin d7, tetragonally distorted octahedral complexes, in which the unpaired electron resides predominantly in the orbital.[6]

 Figure 1 Molecular Orbital Diagram for Mononuclear Palladium(II), Palladium(III), and Palladium(IV) Complexes[5,6]

Unlike complexes based on platinum(III),[715] compounds containing palladium(III) are rare. Several mononuclear coordination complexes, proposed to contain palladium(III), have been observed by electrochemical measurements as well as EPR spectroscopy.[1625] The spin density in these complexes, either metal- or ligand-centered, is the source of continuing discussion.[2629] The various methods that have been developed for the preparation of mononuclear palladium(III) complexes are presented in the following sections.

1.2.5.1.1.1 Method 1: Disproportionation of Palladium(II) Complexes

Facially coordinating 1,4,7-triazacyclononane and 1,4,7-trithiacyclononane ligands have been used to stabilize mononuclear palladium(III) complexes.[3033] Complex 2, in which two facially coordinating tridentate ligands compose the octahedral coordination environment of the palladium(III) center, has been prepared by disproportionation of palladium(II) ( Scheme 1). X-ray crystallographic characterization has established the distorted octahedral geometry of the palladium centers, as expected for low-spin, d7 palladium(III). Electrochemical and spectroscopic investigations have indicated that the unpaired electron in complex 2 resides predominantly in the orbital, consistent with the molecular orbital diagram in  Figure 1.[3439]

 Scheme 1 Synthesis of Mononuclear Palladium(III) Werner Complexes by Disproportionation of Palladium(II)[34]

Bis(1,4,7-triazacyclononane-κ3N)palladium(III) Hexafluorophosphate (2):[34]

PdCl2 (0.50 g, 2.8 mmol, 1.0 equiv) was dissolved in deionized H2O (20 mL) and the soln was adjusted to pH 9 with NaOH. The soln was warmed to 50 °C. 1,4,7-Triazacyclononane (0.90 g, 7.0 mmol, 2.5 equiv) was added directly to the PdCl2 soln, in which it dissolved rapidly. Heating was continued for 1 h at this temperature, during which time the remaining solid PdCl2 dissolved, yielding a lemon-yellow soln with deposited Pd metal (0.13 g; 45% of total Pd); the metallic solid was removed by filtration. The yellow filtrate contained two species; the major constituent was the cation of complex 2 with a minor amount of the cation of complex 1. Addition of sat. NH4PF6 soln caused precipitation of 2 as a yellow powder.

1.2.5.1.1.2 Method 2: Oxidation of Palladium(II) Complexes with Perchloric Acid

Mononuclear palladium(III) complex 4 has been prepared by chemical oxidation of mononuclear palladium(II) complex 3 with perchloric acid ( Scheme 2).[30] Experimental details of the oxidation of 3 with perchloric acid are unavailable.

 Scheme 2 Preparation of a Mononuclear Palladium(III) Complex by Oxidation of a Mononuclear Palladium(II) Complex with Perchloric Acid[30]

1.2.5.1.1.3 Method 3: Electrochemical Oxidation of Palladium(II) Complexes

In 2010, controlled potential electrolysis (CPE) was used to prepare the first mononuclear organometallic complexes of palladium(III) (complexes 6,  Scheme 3).[40] One-electron oxidation of complexes 5 results in the formation of mononuclear palladium(III) complexes 6, in which the palladium(III) centers are stabilized by chelating tetradentate ligands.

 Scheme 3 Preparation of Mononuclear Palladium(III) Complexes by Controlled Potential Electrolysis of Mononuclear Palladium(II) Complexes[40]

R1 X− Conditions Yield (%) Ref
Me BF4− Bu4NBF4, CH2Cl2 78 [40]
Me PF6− Bu4NPF6, THF 63 [40]
Me ClO4− Bu4NClO4, THF 86 [40]
Ph ClO4− Bu4NClO4, THF 52 [40]
Chloro[3,7-di-tert-butyl-3,7-diaza-1,5(2,6)-dipyridinacyclooctaphane-κ4N]methylpalladium(III) Tetrafluoroborate (6, R1 = Me; X = BF4); Typical Procedure:[40]

CPE of 5 (R1 = Me) was performed in a two-compartment bulk electrolysis cell in which the auxiliary electrode was separated from the working compartment by a medium-frit glass junction. The electrolysis was carried out in a 100-mL electrolysis cell using a reticulated vitreous carbon working electrode. A stirred soln of mononuclear Pd(II) complex 5 (R1 = Me; 90.0 mg, 177 μmol, 1.00 equiv) in deaerated 0.1 M Bu4NBF4 in CH2Cl2 (70 mL) was electrolyzed at a potential of 0.600 V at 20 °C. The electrolysis was stopped after the charge corresponding to one-electron oxidation had been transferred. The dark green soln resulting from electrolysis was stored at −20 °C overnight. The resulting green fine-crystalline precipitate of mononuclear Pd(III) complex 6 (R1 = Me; X = BF4) was collected by filtration from the cold soln and washed with both Et2O and pentane; yield: 78%. The product was recrystallized (layering a MeCN soln of the product with Et2O at −20 °C) to give 6 (R1 = Me; X = BF4)•MeCN as a dark blue-green solid; yield: 78.9 mg (70%); 1H NMR (CD3CN, δ): 12.3 (br s), 10.0, 8.6, −3.2; μeff = 1.80 μB (Evans method, CD3CN soln); UV-vis (MeCN) λ (ɛ): 723(1.1 × 103), 545 (sh, 4.9 × 102), 368 (3.3 × 103), 263 nm (1.2 × 104).

1.2.5.1.1.4 Method 4: Oxidation of Palladium(II) with Single-Electron Oxidants

One-electron oxidation of mononuclear palladium(II) complex 7 with either ferrocenium hexafluorophosphate or thianthrenyl hexafluoroantimonate affords mononuclear palladium(III) complex 8 ( Scheme 4).[40] Electrochemical and chemical oxidations ( Sections 1.2.5.1.1.3 and 1.2.5.1.1.4, respectively) allow access to complementary substrate classes; electrochemical oxidation of 7 failed to provide access to mononuclear palladium(III) complex 8.

 Scheme 4 Preparation of a Mononuclear Palladium(III) Complex from a Mononuclear Palladium(II) Complex Using a One-Electron Oxidant[40]

[3,7-Di-tert-butyl-3,7-diaza-1,5(2,6)-dipyridinacyclooctaphane-κN4]dimethylpalladium(III) Perchlorate (8):[40]

A soln of ferrocenium hexafluorophosphate (58.7 mg, 177 μmol, 1.00 equiv) in MeCN (3 mL) was added dropwise to a stirred suspension of 7 (86.8 mg, 177 μmol, 1.00 equiv) in MeCN (7 mL) at rt in a N2-filled drybox. The mixture was stirred for 20 min, and then the solvent was removed under reduced pressure. The solid residue was redissolved in MeCN (2 mL) and the soln was filtered through a cotton plug. A solid sample of LiClO4 (56.7 mg, 533 μmol, 3.01 equiv) was added to the filtrate causing precipitation of a dark green crystalline solid. The suspension was stored at −30 °C for 30 min. The resulting dark green...

Erscheint lt. Verlag 14.5.2014
Verlagsort Stuttgart
Sprache englisch
Themenwelt Naturwissenschaften Chemie Organische Chemie
Technik
Schlagworte actinide • Actinide-Arene Complexes • Actinide Systems • Bridged Ligands • Chemie • Chemische Synthese • chemistry of organic compound • chemistry organic reaction • chemistry reference work • compound organic synthesis • Functional Group • Mechanism • Method • methods peptide synthesis • Multimetallic Actinide Complexes • Nitrogen-Ligand Complexes • Organic Chemistry • organic chemistry functional groups • organic chemistry reactions • organic chemistry review • organic chemistry synthesis • organic method • organic reaction • organic reaction mechanism • Organic Syntheses • organic synthesis • Organisch-chemische Synthese • Organische Chemie • Organoactinide Complexes • Oxygen-Ligand Complexes • Palladium Complexes • Peptide synthesis • Phospholes • Phosphorus-Ligand Complexes • Practical • practical organic chemistry • Reaction • reference work • Review • review organic synthesis • review synthetic methods • Silylenes • Sulfur-Ligand Complexes • Synthese • synthesis reference work • Synthetic chemistry • Synthetic Methods • Synthetic Organic Chemistry • synthetic transformation • Titanium Complexes • Vinylboranes
ISBN-10 3-13-178871-2 / 3131788712
ISBN-13 978-3-13-178871-9 / 9783131788719
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Wasserzeichen)
Größe: 24,2 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür die kostenlose Software Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Das Basiswissen der Chemie

von Charles E. Mortimer; Ulrich Müller

eBook Download (2019)
Georg Thieme Verlag KG
84,99