Combined Parametric-Nonparametric Identification of Block-Oriented Systems
Seiten
2013
|
2014
Springer International Publishing (Verlag)
978-3-319-03595-6 (ISBN)
Springer International Publishing (Verlag)
978-3-319-03595-6 (ISBN)
This volume introduces a variety of combined parametric-nonparametric algorithms aimed at resolving problems with block-oriented non-linear dynamic system identification in the presence of random disturbances. It includes analysis of their limit properties.
This book considers a problem of block-oriented nonlinear dynamic system identification in the presence of random disturbances. This class of systems includes various interconnections of linear dynamic blocks and static nonlinear elements, e.g., Hammerstein system, Wiener system, Wiener-Hammerstein ("sandwich") system and additive NARMAX systems with feedback. Interconnecting signals are not accessible for measurement. The combined parametric-nonparametric algorithms, proposed in the book, can be selected dependently on the prior knowledge of the system and signals. Most of them are based on the decomposition of the complex system identification task into simpler local sub-problems by using non-parametric (kernel or orthogonal) regression estimation. In the parametric stage, the generalized least squares or the instrumental variables technique is commonly applied to cope with correlated excitations. Limit properties of the algorithms have been shown analytically and illustrated in simple experiments.
This book considers a problem of block-oriented nonlinear dynamic system identification in the presence of random disturbances. This class of systems includes various interconnections of linear dynamic blocks and static nonlinear elements, e.g., Hammerstein system, Wiener system, Wiener-Hammerstein ("sandwich") system and additive NARMAX systems with feedback. Interconnecting signals are not accessible for measurement. The combined parametric-nonparametric algorithms, proposed in the book, can be selected dependently on the prior knowledge of the system and signals. Most of them are based on the decomposition of the complex system identification task into simpler local sub-problems by using non-parametric (kernel or orthogonal) regression estimation. In the parametric stage, the generalized least squares or the instrumental variables technique is commonly applied to cope with correlated excitations. Limit properties of the algorithms have been shown analytically and illustrated in simple experiments.
Hammerstein system.- Wiener system.- Wiener-Hammerstein (sandwich) system.- Large-scale interconnected systems.- Structure detection and model order selection.- Time-varying systems.- Simulation studies.- Summary.
Erscheint lt. Verlag | 5.12.2013 |
---|---|
Reihe/Serie | Lecture Notes in Control and Information Sciences |
Zusatzinfo | XVI, 238 p. 68 illus. |
Verlagsort | Cham |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 397 g |
Themenwelt | Mathematik / Informatik ► Informatik ► Theorie / Studium |
Naturwissenschaften ► Physik / Astronomie ► Optik | |
Technik ► Elektrotechnik / Energietechnik | |
Schlagworte | Block-Oriented Systems • Control Nonlinear Dynamics • Hammerstein System • NARMAX Systems • Nonlinear Dynamic Systems Identification • Parametric-Nonparametric Identification • Wiener-Hammerstein |
ISBN-10 | 3-319-03595-9 / 3319035959 |
ISBN-13 | 978-3-319-03595-6 / 9783319035956 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
was jeder über Informatik wissen sollte
Buch | Softcover (2024)
Springer Vieweg (Verlag)
37,99 €
Grundlagen – Anwendungen – Perspektiven
Buch | Softcover (2022)
Springer Vieweg (Verlag)
34,99 €
Eine Einführung in die Systemtheorie
Buch | Softcover (2022)
UTB (Verlag)
25,00 €