Nonlinear Model Predictive Control
Theory and Algorithms
Seiten
2013
|
2011 ed.
Springer London Ltd (Verlag)
978-1-4471-2649-2 (ISBN)
Springer London Ltd (Verlag)
978-1-4471-2649-2 (ISBN)
- Titel erscheint in neuer Auflage
- Artikel merken
Zu diesem Artikel existiert eine Nachauflage
Here is a thorough introduction to nonlinear model predictive control for discrete-time and sampled-data systems. Includes an appendix with NMPC software and accompanying MATLAB(R) and C++ programs enable readers to perform computer experiments exploring NMPC.
Nonlinear Model Predictive Control is a thorough and rigorous introduction to nonlinear model predictive control (NMPC) for discrete-time and sampled-data systems. NMPC is interpreted as an approximation of infinite-horizon optimal control so that important properties like closed-loop stability, inverse optimality and suboptimality can be derived in a uniform manner. These results are complemented by discussions of feasibility and robustness. NMPC schemes with and without stabilizing terminal constraints are detailed and intuitive examples illustrate the performance of different NMPC variants. An introduction to nonlinear optimal control algorithms gives insight into how the nonlinear optimisation routine - the core of any NMPC controller - works. An appendix covering NMPC software and accompanying software in MATLAB(R) and C++(downloadable from www.springer.com/ISBN) enables readers to perform computer experiments exploring the possibilities and limitations of NMPC.
Nonlinear Model Predictive Control is a thorough and rigorous introduction to nonlinear model predictive control (NMPC) for discrete-time and sampled-data systems. NMPC is interpreted as an approximation of infinite-horizon optimal control so that important properties like closed-loop stability, inverse optimality and suboptimality can be derived in a uniform manner. These results are complemented by discussions of feasibility and robustness. NMPC schemes with and without stabilizing terminal constraints are detailed and intuitive examples illustrate the performance of different NMPC variants. An introduction to nonlinear optimal control algorithms gives insight into how the nonlinear optimisation routine - the core of any NMPC controller - works. An appendix covering NMPC software and accompanying software in MATLAB(R) and C++(downloadable from www.springer.com/ISBN) enables readers to perform computer experiments exploring the possibilities and limitations of NMPC.
Introduction.- Discrete-time and Sampled-data Systems.- Nonlinear Model Predictive Control.- Infinite-horizon Optimal Control.- Stability and Suboptimality Using Stabilizing Constraints.- Stability and Suboptimality without Stabilizing Constraints.- Feasibility and Robustness.- Numerical Discretization.- Numerical Optimal Control of Nonlinear Systems.- Examples.- Appendix: Brief Introduction to NMPC Software.
Reihe/Serie | Communications and Control Engineering |
---|---|
Zusatzinfo | 3 black & white tables, biography |
Verlagsort | England |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 569 g |
Themenwelt | Mathematik / Informatik ► Informatik ► Theorie / Studium |
Naturwissenschaften ► Chemie ► Technische Chemie | |
Technik ► Elektrotechnik / Energietechnik | |
Technik ► Fahrzeugbau / Schiffbau | |
Schlagworte | Control • Control Applications • control engineering • Control Theory • Feedback Control • Model Predictive Control • Nonlinear Control • Numerical Methods • optimal control |
ISBN-10 | 1-4471-2649-1 / 1447126491 |
ISBN-13 | 978-1-4471-2649-2 / 9781447126492 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
was jeder über Informatik wissen sollte
Buch | Softcover (2024)
Springer Vieweg (Verlag)
37,99 €
Grundlagen – Anwendungen – Perspektiven
Buch | Softcover (2022)
Springer Vieweg (Verlag)
34,99 €
Eine Einführung in die Systemtheorie
Buch | Softcover (2022)
UTB (Verlag)
25,00 €