Handbook of Statistical Data Editing and Imputation (eBook)

eBook Download: PDF
2011 | 1. Auflage
464 Seiten
John Wiley & Sons (Verlag)
978-0-470-90483-1 (ISBN)

Lese- und Medienproben

Handbook of Statistical Data Editing and Imputation - Ton de Waal, Jeroen Pannekoek, Sander Scholtus
Systemvoraussetzungen
160,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
A practical, one-stop reference on the theory and applications of
statistical data editing and imputation techniques



Collected survey data are vulnerable to error. In particular,
the data collection stage is a potential source of errors and
missing values. As a result, the important role of statistical data
editing, and the amount of resources involved, has motivated
considerable research efforts to enhance the efficiency and
effectiveness of this process. Handbook of Statistical Data Editing
and Imputation equips readers with the essential statistical
procedures for detecting and correcting inconsistencies and filling
in missing values with estimates. The authors supply an easily
accessible treatment of the existing methodology in this field,
featuring an overview of common errors encountered in practice and
techniques for resolving these issues.

The book begins with an overview of methods and strategies for
statistical data editing and imputation. Subsequent chapters
provide detailed treatment of the central theoretical methods and
modern applications, with topics of coverage including:

* Localization of errors in continuous data, with an outline of
selective editing strategies, automatic editing for systematic and
random errors, and other relevant state-of-the-art methods

* Extensions of automatic editing to categorical data and integer
data

* The basic framework for imputation, with a breakdown of key
methods and models and a comparison of imputation with the
weighting approach to correct for missing values

* More advanced imputation methods, including imputation under
edit restraints

Throughout the book, the treatment of each topic is presented in
a uniform fashion. Following an introduction, each chapter presents
the key theories and formulas underlying the topic and then
illustrates common applications. The discussion concludes with a
summary of the main concepts and a real-world example that
incorporates realistic data along with professional insight into
common challenges and best practices.

Handbook of Statistical Data Editing and Imputation is an
essential reference for survey researchers working in the fields of
business, economics, government, and the social sciences who
gather, analyze, and draw results from data. It is also a suitable
supplement for courses on survey methods at the upper-undergraduate
and graduate levels.

Ton De Waal, PhD, is Head of the Department of Methodology at Statistics Netherlands, where he has also worked at the Division of Business Statistics. Dr. de Waal has written numerous papers in his areas of research interest, which include statistical data editing and imputation for business surveys and statistical disclosure control. Jeroen Pannekoek, PhD, is Senior Researcher in the Department of Methodology at Statistics Netherlands, where he currently leads the research program on data processing methodologies. He has published several papers on discrete data models, measurement errors, interviewer effects, and disclosure control methods. Sander Scholtus, MSc, is Researcher in the Department of Methodology at Statistics Netherlands. He has conducted extensive research on heuristic methods and algorithms for detecting and correcting errors in survey data.

Preface ix

1 Introduction to Statistical Data Editing and Imputation 1

1.1 Introduction 1

1.2 Statistical Data Editing and Imputation in the Statistical Process 4

1.3 Data, Errors, Missing Data, and Edits 6

1.4 Basic Methods for Statistical Data Editing and Imputation 13

1.5 An Edit and Imputation Strategy 17

References 21

2 Methods for Deductive Correction 23

2.1 Introduction 23

2.2 Theory and Applications 24

2.3 Examples 27

2.4 Summary 55

References 55

3 Automatic Editing of Continuous Data 57

3.1 Introduction 57

3.2 Automatic Error Localization of Random Errors 59

3.3 Aspects of the Fellegi-Holt Paradigm 63

3.4 Algorithms Based on the Fellegi-Holt Paradigm 65

3.5 Summary 101

3.A Appendix: Chernikova's Algorithm 103

References 104

4 Automatic Editing: Extensions to Categorical Data 111

4.1 Introduction 111

4.2 The Error Localization Problem for Mixed Data 112

4.3 The Fellegi-Holt Approach 115

4.4 A Branch-and-Bound Algorithm for Automatic Editing of Mixed Data 129

4.5 The Nearest-Neighbor Imputation Methodology 140

References 158

5 Automatic Editing: Extensions to Integer Data 161

5.1 Introduction 161

5.2 An Illustration of the Error Localization Problem for Integer Data 162

5.3 Fourier-Motzkin Elimination in Integer Data 163

5.4 Error Localization in Categorical, Continuous, and Integer Data 172

5.5 A Heuristic Procedure 182

5.6 Computational Results 183

5.7 Discussion 187

References 189

6 Selective Editing 191

6.1 Introduction 191

6.2 Historical Notes 193

6.3 Micro-selection: The Score Function Approach 195

6.4 Selection at the Macro-level 208

6.5 Interactive Editing 212

6.6 Summary and Conclusions 217

References 219

7 Imputation 223

7.1 Introduction 223

7.2 General Issues in Applying Imputation Methods 226

7.3 Regression Imputation 230

7.4 Ratio Imputation 244

7.5 (Group) Mean Imputation 246

7.6 Hot Deck Donor Imputation 249

7.7 A General Imputation Model 255

7.8 Imputation of Longitudinal Data 261

7.9 Approaches to Variance Estimation with Imputed Data 264

7.10 Fractional Imputation 271

References 272

8 Multivariate Imputation 277

8.1 Introduction 277

8.2 Multivariate Imputation Models 280

8.3 Maximum Likelihood Estimation in the Presence of Missing Data 285

8.4 Example: The Public Libraries 295

References 297

9 Imputation Under Edit Constraints 299

9.1 Introduction 299

9.2 Deductive Imputation 301

9.3 The Ratio Hot Deck Method 311

9.4 Imputing from a Dirichlet Distribution 313

9.5 Imputing from a Singular Normal Distribution 318

9.6 An Imputation Approach Based on Fourier-Motzkin Elimination 334

9.7 A Sequential Regression Approach 338

9.8 Calibrated Imputation of Numerical Data Under Linear Edit Restrictions 343

9.9 Calibrated Hot Deck Imputation Subject to Edit Restrictions 349

References 358

10 Adjustment of Imputed Data 361

10.1 Introduction 361

10.2 Adjustment of Numerical Variables 362

10.3 Adjustment of Mixed Continuous and Categorical Data 377

References 389

11 Practical Applications 391

11.1 Introduction 391

11.2 Automatic Editing of Environmental Costs 391

11.3 The EUREDIT Project: An Evaluation Study 400

11.4 Selective Editing in the Dutch Agricultural Census 420

References 426

Index 429

Erscheint lt. Verlag 4.3.2011
Reihe/Serie Wiley Handbooks in Survey Methodology
Wiley Handbooks in Survey Methodology
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Naturwissenschaften
Technik
Schlagworte Datenerhebung • Methoden der Daten- u. Stichprobenerhebung • Statistics • Statistik • Survey Research Methods & Sampling
ISBN-10 0-470-90483-6 / 0470904836
ISBN-13 978-0-470-90483-1 / 9780470904831
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 3,1 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich