Handbook of Statistical Data Editing and Imputation (eBook)
464 Seiten
John Wiley & Sons (Verlag)
978-0-470-90483-1 (ISBN)
statistical data editing and imputation techniques
Collected survey data are vulnerable to error. In particular,
the data collection stage is a potential source of errors and
missing values. As a result, the important role of statistical data
editing, and the amount of resources involved, has motivated
considerable research efforts to enhance the efficiency and
effectiveness of this process. Handbook of Statistical Data Editing
and Imputation equips readers with the essential statistical
procedures for detecting and correcting inconsistencies and filling
in missing values with estimates. The authors supply an easily
accessible treatment of the existing methodology in this field,
featuring an overview of common errors encountered in practice and
techniques for resolving these issues.
The book begins with an overview of methods and strategies for
statistical data editing and imputation. Subsequent chapters
provide detailed treatment of the central theoretical methods and
modern applications, with topics of coverage including:
* Localization of errors in continuous data, with an outline of
selective editing strategies, automatic editing for systematic and
random errors, and other relevant state-of-the-art methods
* Extensions of automatic editing to categorical data and integer
data
* The basic framework for imputation, with a breakdown of key
methods and models and a comparison of imputation with the
weighting approach to correct for missing values
* More advanced imputation methods, including imputation under
edit restraints
Throughout the book, the treatment of each topic is presented in
a uniform fashion. Following an introduction, each chapter presents
the key theories and formulas underlying the topic and then
illustrates common applications. The discussion concludes with a
summary of the main concepts and a real-world example that
incorporates realistic data along with professional insight into
common challenges and best practices.
Handbook of Statistical Data Editing and Imputation is an
essential reference for survey researchers working in the fields of
business, economics, government, and the social sciences who
gather, analyze, and draw results from data. It is also a suitable
supplement for courses on survey methods at the upper-undergraduate
and graduate levels.
Ton De Waal, PhD, is Head of the Department of Methodology at Statistics Netherlands, where he has also worked at the Division of Business Statistics. Dr. de Waal has written numerous papers in his areas of research interest, which include statistical data editing and imputation for business surveys and statistical disclosure control. Jeroen Pannekoek, PhD, is Senior Researcher in the Department of Methodology at Statistics Netherlands, where he currently leads the research program on data processing methodologies. He has published several papers on discrete data models, measurement errors, interviewer effects, and disclosure control methods. Sander Scholtus, MSc, is Researcher in the Department of Methodology at Statistics Netherlands. He has conducted extensive research on heuristic methods and algorithms for detecting and correcting errors in survey data.
Preface ix
1 Introduction to Statistical Data Editing and Imputation 1
1.1 Introduction 1
1.2 Statistical Data Editing and Imputation in the Statistical Process 4
1.3 Data, Errors, Missing Data, and Edits 6
1.4 Basic Methods for Statistical Data Editing and Imputation 13
1.5 An Edit and Imputation Strategy 17
References 21
2 Methods for Deductive Correction 23
2.1 Introduction 23
2.2 Theory and Applications 24
2.3 Examples 27
2.4 Summary 55
References 55
3 Automatic Editing of Continuous Data 57
3.1 Introduction 57
3.2 Automatic Error Localization of Random Errors 59
3.3 Aspects of the Fellegi-Holt Paradigm 63
3.4 Algorithms Based on the Fellegi-Holt Paradigm 65
3.5 Summary 101
3.A Appendix: Chernikova's Algorithm 103
References 104
4 Automatic Editing: Extensions to Categorical Data 111
4.1 Introduction 111
4.2 The Error Localization Problem for Mixed Data 112
4.3 The Fellegi-Holt Approach 115
4.4 A Branch-and-Bound Algorithm for Automatic Editing of Mixed Data 129
4.5 The Nearest-Neighbor Imputation Methodology 140
References 158
5 Automatic Editing: Extensions to Integer Data 161
5.1 Introduction 161
5.2 An Illustration of the Error Localization Problem for Integer Data 162
5.3 Fourier-Motzkin Elimination in Integer Data 163
5.4 Error Localization in Categorical, Continuous, and Integer Data 172
5.5 A Heuristic Procedure 182
5.6 Computational Results 183
5.7 Discussion 187
References 189
6 Selective Editing 191
6.1 Introduction 191
6.2 Historical Notes 193
6.3 Micro-selection: The Score Function Approach 195
6.4 Selection at the Macro-level 208
6.5 Interactive Editing 212
6.6 Summary and Conclusions 217
References 219
7 Imputation 223
7.1 Introduction 223
7.2 General Issues in Applying Imputation Methods 226
7.3 Regression Imputation 230
7.4 Ratio Imputation 244
7.5 (Group) Mean Imputation 246
7.6 Hot Deck Donor Imputation 249
7.7 A General Imputation Model 255
7.8 Imputation of Longitudinal Data 261
7.9 Approaches to Variance Estimation with Imputed Data 264
7.10 Fractional Imputation 271
References 272
8 Multivariate Imputation 277
8.1 Introduction 277
8.2 Multivariate Imputation Models 280
8.3 Maximum Likelihood Estimation in the Presence of Missing Data 285
8.4 Example: The Public Libraries 295
References 297
9 Imputation Under Edit Constraints 299
9.1 Introduction 299
9.2 Deductive Imputation 301
9.3 The Ratio Hot Deck Method 311
9.4 Imputing from a Dirichlet Distribution 313
9.5 Imputing from a Singular Normal Distribution 318
9.6 An Imputation Approach Based on Fourier-Motzkin Elimination 334
9.7 A Sequential Regression Approach 338
9.8 Calibrated Imputation of Numerical Data Under Linear Edit Restrictions 343
9.9 Calibrated Hot Deck Imputation Subject to Edit Restrictions 349
References 358
10 Adjustment of Imputed Data 361
10.1 Introduction 361
10.2 Adjustment of Numerical Variables 362
10.3 Adjustment of Mixed Continuous and Categorical Data 377
References 389
11 Practical Applications 391
11.1 Introduction 391
11.2 Automatic Editing of Environmental Costs 391
11.3 The EUREDIT Project: An Evaluation Study 400
11.4 Selective Editing in the Dutch Agricultural Census 420
References 426
Index 429
Erscheint lt. Verlag | 4.3.2011 |
---|---|
Reihe/Serie | Wiley Handbooks in Survey Methodology | Wiley Handbooks in Survey Methodology |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Statistik |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
Naturwissenschaften | |
Technik | |
Schlagworte | Datenerhebung • Methoden der Daten- u. Stichprobenerhebung • Statistics • Statistik • Survey Research Methods & Sampling |
ISBN-10 | 0-470-90483-6 / 0470904836 |
ISBN-13 | 978-0-470-90483-1 / 9780470904831 |
Haben Sie eine Frage zum Produkt? |
Größe: 3,1 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich