Maximum Penalized Likelihood Estimation - Paul P. Eggermont, Vincent N. LaRiccia

Maximum Penalized Likelihood Estimation

Volume II: Regression
Buch | Softcover
572 Seiten
2011
Springer-Verlag New York Inc.
978-1-4614-1712-5 (ISBN)
139,09 inkl. MwSt
Ideal for researchers and practitioners in statistics and industrial mathematics, this book covers the theory and practice of nonparametric estimation. It is novel in its use of maximum penalized likelihood estimation and convex minimization problem theory.
This is the second volume of a text on the theory and practice of maximum penalized likelihood estimation. It is intended for graduate students in s- tistics, operationsresearch, andappliedmathematics, aswellasresearchers and practitioners in the ?eld. The present volume was supposed to have a short chapter on nonparametric regression but was intended to deal mainly with inverse problems. However, the chapter on nonparametric regression kept growing to the point where it is now the only topic covered. Perhaps there will be a Volume III. It might even deal with inverse problems. But for now we are happy to have ?nished Volume II. The emphasis in this volume is on smoothing splines of arbitrary order, but other estimators (kernels, local and global polynomials) pass review as well. We study smoothing splines and local polynomials in the context of reproducing kernel Hilbert spaces. The connection between smoothing splines and reproducing kernels is of course well-known. The new twist is thatlettingtheinnerproductdependonthesmoothingparameteropensup new possibilities: It leads to asymptotically equivalent reproducing kernel estimators (without quali?cations) and thence, via uniform error bounds for kernel estimators, to uniform error bounds for smoothing splines and, via strong approximations, to con?dence bands for the unknown regression function. ItcameassomewhatofasurprisethatreproducingkernelHilbert space ideas also proved useful in the study of local polynomial estimators.

Nonparametric Regression.- Smoothing Splines.- Kernel Estimators.- Sieves.- Local Polynomial Estimators.- Other Nonparametric Regression Problems.- Smoothing Parameter Selection.- Computing Nonparametric Estimators.- Kalman Filtering for Spline Smoothing.- Equivalent Kernels for Smoothing Splines.- Strong Approximation and Confidence Bands.- Nonparametric Regression in Action.

Erscheint lt. Verlag 2.12.2011
Reihe/Serie Springer Series in Statistics
Zusatzinfo XX, 572 p.
Verlagsort New York, NY
Sprache englisch
Maße 155 x 235 mm
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik Allgemeines / Lexika
Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Naturwissenschaften Biologie
Technik Elektrotechnik / Energietechnik
Wirtschaft Volkswirtschaftslehre Ökonometrie
ISBN-10 1-4614-1712-0 / 1461417120
ISBN-13 978-1-4614-1712-5 / 9781461417125
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Eine kurze Geschichte der Informationsnetzwerke von der Steinzeit bis …

von Yuval Noah Harari

Buch | Hardcover (2024)
Penguin (Verlag)
28,00