Advances in Heat Transfer

Advances in Heat Transfer (eBook)

eBook Download: EPUB
1998 | 1. Auflage
484 Seiten
Elsevier Science (Verlag)
978-0-08-057585-8 (ISBN)
Systemvoraussetzungen
173,66 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Advances in Heat Transfer is designed to fill the information gap between regularly scheduled journals and university level textbooks by providing in-depth review articles over a broader scope than is allowablein either journals or texts.
Advances in Heat Transfer is designed to fill the information gap between regularly scheduled journals and university level textbooks by providing in-depth review articles over a broader scope than is allowablein either journals or texts.

Front Cover 1
Advances in Heat Transfer, Volume 31 4
Copyright Page 5
Contents 6
Contributors 11
Chapter 1. Coupled Transport in Multiphase Systems: A Theory of Drying 12
I. Introduction 12
II. Basic Equations 17
III. Volume Averaging 22
IV. Governing Point Equations and Boundary Conditions 34
V. Volume-Averaged Transport Equations: Mass 39
VI. Volume-Averaged Transport Equations: Momentum 50
VII. Volume-Averaged Transport Equations: Energy 52
VIII. Thermodynamic Relations and Local Mass Equilibrium 59
IX. Local Thermal Equilibrium 64
X. Closure: Mass 67
XI. Closure: Energy 71
XII. Coupled Closure Problem 79
XIII. A Diffusion Theory of Drying 96
XIV. Conclusions 110
Acknowledgment 111
Nomenclature 111
References 113
Chapter 2. Integral Methods for Two-Phase Flow in Hydraulic Systems 116
I. Importance of Two-Phase Flow 116
II. Methods Currently Used and the Need for Alternative Methods of Two-Phase Flow Analysis 117
III. The Selection of Two-Phase Models 119
IV. Integral Methods 124
V. Global Balance Equations for Thermohydraulic Systems 156
VI. Conclusions: Importance of Integral Methods 163
Nomenclature 164
References 166
Chapter 3. Heat Transfer Enhancement in Heat Exchangers 170
I. Introduction 170
II. Choice of Heat Transfer Enhancement Method 172
III. Heat Transfer Enhancement in Tubes 198
IV. Heat Transfer Enhancement in Tube Bundles in Longitudinal Flow and Annular Channels 243
V. Heat Transfer Enhancement in Flat and Triangular Channels 270
VI. Heat Transfer Enhancement in Transverse Flow Past Annular Turbulator–Equipped Tubes 274
VII. Boiling Heat Transfer Enhancements in Channels 275
VIII. Enhancement of Condensation Heat Transfer 286
IX. Heat Transfer Enhancement at Fouling on Tube Surfaces 305
X. Methods of Calculating Effective Heat Transfer Surfaces 315
Acknowledgments 331
Nomenclature 331
References 333
Chapter 4. Comparison of Monte Carlo Strategies for Radiative Transfer in Participating Media 344
Abstract 344
I. Introduction 345
II. Geometric Modeling and Ray Tracing 347
III. Treatment of Realistic Property Dependencies 375
IV. Strategies for High-Performance Computers 411
V. Summary and Conclusions 432
References 436
Chapter 5. Mitigation of Water Fouling: Technology Status and Challenges 442
I. Introduction 442
II. Fouling Mechanisms 446
III. Mitigation Methods 457
IV. Challenges 474
V. Summary 480
Acknowledgments 481
Nomenclature 481
References 481
Index 486

V Volume-Averaged Transport Equations: Mass


In this section we present the volume-averaged form of the continuity equations for the solid, liquid, and gas phases. The results for the solid and liquid phases are straightforward, as is the total continuity equation for the gas phase; however, the continuity equation for water vapor is complex and requires the solution of a closure problem in order to obtain the final form.

A SOLID PHASE


Since the σ-phase is a rigid, solid phase, the continuity equation is replaced by Eq. (105) and the local volume-averaged equivalent is given by

σσ=constant

  (137)

Here the intrinsic average density is defined according to Eq. (46).

B LIQUID PHASE


In this case we begin with Eq. (110),

ρβ∂t+∇⋅ρβvβ=0

  (138)

and form the superficial average to obtain

ρβ∂t+∇⋅ρβvβ=0

  (139)

We can use the general transport theorem, in the form given by Eq. (56), to express the first term in Eq. (139) as

ρβ∂t=∂∂β∂t−1V∫Aβγtρβw⋅nβγdA−1V∫Aβσρβw⋅nβσdA

  (140)

Since the speed of displacement of the β-σ interface is zero, the last term in this result is zero and Eq. (139) takes the form

ρβ∂t−1V∫Aβγtρβw⋅nβγdA+∇⋅ρβvβ=0

  (141)

Integration and differentiation in the last term in Eq. (141) can be interchanged using the spacial averaging theorem given by Eq. (53). This leads to

⋅ρβvβ=∇⋅ρβvβ+1V∫Aβγtnβγ.ρβvβdA+1V∫Aβσtnβγ.ρβvβdA

  (142)

Since the β-σ interface is impermeable, nβσ · vβ is zero, and we can use this condition to express Eq. (141) as

ρβ∂t⏟accumulation+∇⋅ρβvβ⏟convection+1V∫Aβγtρβvβ−w⋅nβγdA⏟massrateofevaporation=0

  (143)

It is quite reasonable to neglect variations of the density, ρβ , and this allows us to use Eq. (47) to express the superficial average density as

β=εβρββ=εβρβ

  (144)

Substitution of this result into Eq. (143) provides

∂tρβεβ+∇⋅ρβvβ+1V∫Aβγtρβvβ−w⋅nβγdA⏟massrateofevaporation=0

  (145)

Since we are treating the liquid-phase density as a constant, we could remove ρβ from both the time and space derivatives in Eq. (145); however, it is convenient to retain the conservative form of Eq. (145).

The mass rate of evaporation represents a crucial term in any theory of drying, and we identify this term as

˙=1V∫Aβγtρβvβ−w⋅nβγdA

  (146)

With this representation, our volume-averaged continuity equation for the liquid phase becomes

∂tρβεβ+∇⋅ρβvβ+m˙=0

  (147)

and we are ready to move on to the gas-phase continuity equation. Before doing so, we should remind the reader that when we assume that the density can be treated as a constant, we are specifying the dependent variable in one of our governing differential equations. This means that Eq. (138) is no longer the governing differential equation for ρβ , and it becomes the constraining equation for in Eq. (111). Because of this, we are forced to discard the equation of state [Eq. (39)] for the pressure, , as is commonly done for the solution of incompressible flows.

C GAS PHASE: TOTAL


In this case we begin with the total continuity equation given by Eq. (114),

ργ∂t+∇⋅ργvγ=0

  (148)

and repeat the procedure leading to Eq. (143). This provides us with

ργ∂t+∇⋅ργvγ+1V∫Aγβtρβvβ−w⋅nγβdA=0

  (149)

however, we cannot simplify this result by neglecting variations in the density ργ. We first attack the accumulation term by expressing the superficial average density as

γ=εγργγ

  (150)

and this leads to

∂tεγργγ+∇⋅ργvγ+1V∫Aγβtργvγ−w⋅nγβdA=0

  (151)

We deal with the convective transport term by using the spatial decomposition represented by Eq. (57),

γ=ργγ+ρ˜γvγ=vγγ+v˜γ

  (152)

and then follow the analysis of Carbonell and Whitaker [5] to obtain

∂tεγργγ+∇⋅ρ˜γv˜γ+1V∫Aγβtργvγ−w⋅nγβdA=0

  (153)

Here we should note that the convective transport has been expressed in terms of the superficial average velocity according to the following analysis:

γγvγγ=1ργγvγγ=εγργγvγγ=ργγvγ

  (154)

The quantity ˜γv˜γ represents the dispersive flux of mass, and while dispersion is often considered to be important in the species continuity equation, it is generally neglected in the total continuity equation, and we will follow that practice here. This allows us to express Eq. (153) as

∂tεγργγ+∇⋅ργγvγ+1V∫Aγβtργvγ−w⋅nγβdA=0

  (155)

On the basis of the definition of the mass rate of evaporation given by Eq. (146) and the jump condition given by Eq. (128), we can express Eq. (155) as

∂tεγργγ+∇⋅ργγvγ−m˙=0

  (156)

We are now ready to attack the gas-phase continuity equation for water.

D GAS PHASE: WATER VAPOR


The gas-phase continuity equation for water is of crucial importance, since there are many drying processes that are controlled by vapor-phase moisture transport. We begin with Eq. (113a) and form the volume average to obtain

ρAγ∂t+∇⋅ρAγvAγ=0water

  (157)

We can repeat the development given by Eqs. (148) through (151) to obtain

∂tεγρAγγ+∇⋅ρAγvAγ+1V∫AγβtρAγvAγ−w⋅nγβdA=0

  (158)

The jump condition given by Eq. (126) allows us to make use of the mass rate of evaporation to express this result as

∂tεγρAγγ+∇⋅ρAγvAγ−m˙=0

  (159)

At this point, the manner in which we treat the continuity equation for the water vapor depends on the drying process under consideration. If the gas-phase mass average velocity is to be determined by Darcy's law, we decompose the species velocity according to

Aγ=vγ+uAγ

  (160)

and then use Fick's law to express the flux of species A according...

Erscheint lt. Verlag 9.6.1998
Mitarbeit Herausgeber (Serie): Young I. Cho, George A. Greene, James P. Hartnett, Thomas F. Irvine
Sprache englisch
Themenwelt Sachbuch/Ratgeber
Naturwissenschaften Physik / Astronomie Thermodynamik
Technik Bauwesen
Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
ISBN-10 0-08-057585-4 / 0080575854
ISBN-13 978-0-08-057585-8 / 9780080575858
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich