Superlattice to Nanoelectronics (eBook)
325 Seiten
Elsevier Science (Verlag)
978-0-08-045568-6 (ISBN)
The author communicates a basic understanding of the physics involved from first principles, whilst adding new depth, using simple mathematics and explanation of the background essentials.
Topics covered include
* Introductory materials
* Superlattice, Bloch oscillations and transport
* Tunneling in QWs to QDs
* Optical properties: optical transitions, size dependent dielectric constant, capacitance and doping
* Quantum devices: New approaches without doping and heterojunctions - quantum confinement via geometry and multipole electrodes. Issues of robustness, redundancy and I/O.
Researchers, course students and research establishments should read this book, written by the leading expert in nanoelectronics and superlattices.
* The Author is one of the founders of the field of superlattices
* The FIRST historical overview of the field
* Provides a basic understanding of the physics involved from first principles, whilst adding new depth, using simple mathematics and explanation of the background essentials
Superlattice to Nanoelectronics provides a historical overview of the early work performed by Tsu and Esaki, to orient those who want to enter into this nanoscience. It describes the fundamental concepts and goes on to answer many questions about todays 'Nanoelectronics'. It covers the applications and types of devices which have been produced, many of which are still in use today. This historical perspective is important as a guide to what and how technology and new fundamental ideas are introduced and developed. The author communicates a basic understanding of the physics involved from first principles, whilst adding new depth, using simple mathematics and explanation of the background essentials. Topics covered include* Introductory materials * Superlattice, Bloch oscillations and transport * Tunneling in QWs to QDs * Optical properties: optical transitions, size dependent dielectric constant, capacitance and doping * Quantum devices: New approaches without doping and heterojunctions - quantum confinement via geometry and multipole electrodes. Issues of robustness, redundancy and I/O.Researchers, course students and research establishments should read this book, written by the leading expert in nanoelectronics and superlattices.* The Author is one of the founders of the field of superlattices* The FIRST historical overview of the field* Provides a basic understanding of the physics involved from first principles, whilst adding new depth, using simple mathematics and explanation of the background essentials
Cover 1
Frontmatter 2
Half Title Page 2
Copyright 3
Title Page 4
Copyright 5
Preface 6
Introduction 10
Contents 16
1. Superlattice 21
1.1. THE BIRTH OF THE MAN-MADE SUPERLATTICE 21
1.2. A MODEL FOR THE CREATION OF MAN-MADE ENERGY BANDS 24
1.3. TRANSPORT PROPERTIES OF A SUPERLATTICE 26
1.4. MORE RIGOROUS DERIVATION OF THE NEGATIVE DIFFERENTIAL CONDUCTANCE 26
1.5. RESPONSE OF A TIME-DEPENDENT ELECTRIC FIELD 30
1.6. NDC FROM THE HOPPING MODEL AND ELECTRIC FIELD INDUCED LOCALIZATION 35
1.7. EXPERIMENTS 47
1.8. TYPE II SUPERLATTICE 53
1.9. PHYSICAL REALIZATION AND CHARACTERIZATION OF A SUPERLATTICE 64
1.10. SUMMARY 73
REFERENCES 74
2. Resonant Tunneling Via Man-Made Quantum Well States 77
2.1. THE BIRTH OF RESONANT TUNNELING 77
2.2. SOME FUNDAMENTALS 81
2.3. CONDUCTANCE FROM THE TSU–ESAKI FORMULA 86
2.4. TUNNELING TIME FROM THE TIME-DEPENDENT SCHRÖDINGER EQUATION 87
2.5. DAMPING IN RESONANT TUNNELING 97
2.6. VERY SHORT l AND w FOR AN AMORPHOUS QUANTUM WELL 117
2.7. SELF-CONSISTENT POTENTIAL CORRECTION OF DBRT 120
2.8. EXPERIMENTAL CONFIRMATION OF RESONANT TUNNELING 123
2.9. INSTABILITY IN RTD 126
2.10. SUMMARY 132
REFERENCES 134
3. Optical Properties and Raman Scattering in Man-Made Quantum Systems 137
3.1. OPTICAL ABSORPTION IN A SUPERLATTICE 137
3.2. PHOTOCONDUCTIVITY IN A SUPERLATTICE 143
3.3. RAMAN SCATTERING IN A SUPERLATTICE AND QUANTUM WELL 146
3.4. SUMMARY 162
REFERENCES 163
4. Dielectric Function and Doping of a Superlattice 165
4.1. DIELECTRIC FUNCTION OF A SUPERLATTICE AND A QUANTUM WELL 165
4.2. DOPING A SUPERLATTICE 169
4.3. SUMMARY 173
REFERENCES 173
5. Quantum Step and Activation Energy 175
5.1. OPTICAL PROPERTIES OF QUANTUM STEPS 175
5.2. DETERMINATION OF ACTIVATION ENERGY IN QUANTUM WELLS 180
5.3. SUMMARY 185
REFERENCES 185
6. Semiconductor Atomic Superlattice (SAS) 187
6.1. SILICON-BASED QUANTUM WELLS 188
6.2. Si–INTERFACE ADSORBED GAS (IAG) SUPERLATTICE 189
6.3. AMORPHOUS SILICON/SILICON OXIDE SUPERLATTICE 191
6.4. SILICON–OXYGEN (Si–O) SUPERLATTICE 193
6.5. ESTIMATE OF THE BAND-EDGE ALIGNMENT USING ATOMIC STATES 198
6.6. ESTIMATE OF THE BAND-EDGE ALIGNMENT WITH HOMO–LUMO 199
6.7. ESTIMATION OF STRAIN FROM A BALL AND STICK MODEL 200
6.8. ELECTROLUMINESCENCE AND PHOTOLUMINESCENCE 214
6.9. TRANSPORT THROUGH A Si–O SUPERLATTICE 218
6.10. COMPARISON OF A Si–O SUPERLATTICE AND A Ge–Si MONOLAYER SUPERLATTICE 221
6.11. SUMMARY 223
REFERENCES 224
7. Si Quantum Dots 227
7.1. ENERGY STATES OF SILICON QUANTUM DOTS 227
7.2. RESONANT TUNNELING IN SILICON QUANTUM DOTS 233
7.3. SLOW OSCILLATIONS AND HYSTERESIS 240
7.4. AVALANCHE MULTIPLICATION FROM RESONANT TUNNELING 248
7.5. INFLUENCE OF LIGHT AND REPEATABILITY UNDER MULTIPLE SCANS 252
7.6. SUMMARY 254
REFERENCES 256
8. Capacitance, Dielectric Constant and Doping Quantum Dots 259
8.1. CAPACITANCE OF SILICON QUANTUM DOTS 259
8.2. DIELECTRIC CONSTANT OF A SILICON QUANTUM DOT 268
8.3. DOPING A SILICON QUANTUM DOT 277
8.4. SUMMARY 283
REFERENCES 284
9. Porous Silicon 287
9.1. POROUS SILICON – LIGHT EMITTING SILICON 287
9.2. POROUS SILICON – OTHER APPLICATIONS 292
9.3. SUMMARY 295
REFERENCES 295
10. Some Novel Devices 297
10.1. COLD CATHODE 297
10.2. SATURATION INTENSITY OF PbS QUANTUM DOTS 301
10.3. MULTIPOLE ELECTRODE HETEROJUNCTION HYBRID STRUCTURES 305
10.4. SOME FUNDAMENTAL ISSUES: MAINLY DIFFICULTIES 309
10.5. COMMENTS ON QUANTUM COMPUTING 311
10.6. SUMMARY 312
REFERENCES 313
11. Quantum Impedance of Electrons 315
11.1. LANDAUER CONDUCTANCE FORMULA 315
11.2. ELECTRON QUANTUM WAVEGUIDE (EQW) 316
11.3. WAVE IMPEDANCE OF ELECTRONS 320
11.4. SUMMARY 328
REFERENCES 329
12. Nanoelectronics: Where Are You? 331
REFERENCES 334
Index 335
Erscheint lt. Verlag | 4.4.2005 |
---|---|
Sprache | englisch |
Themenwelt | Naturwissenschaften ► Physik / Astronomie ► Festkörperphysik |
Technik ► Elektrotechnik / Energietechnik | |
Technik ► Maschinenbau | |
ISBN-10 | 0-08-045568-9 / 0080455689 |
ISBN-13 | 978-0-08-045568-6 / 9780080455686 |
Haben Sie eine Frage zum Produkt? |
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich