Mathematical Modeling of Complex Biological Systems (eBook)

A Kinetic Theory Approach
eBook Download: PDF
2007 | 2006
XII, 188 Seiten
Birkhauser Boston (Verlag)
978-0-8176-4503-8 (ISBN)

Lese- und Medienproben

Mathematical Modeling of Complex Biological Systems -  Abdelghani Bellouquid,  Marcello Delitala
Systemvoraussetzungen
96,29 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book describes the evolution of several socio-biological systems using mathematical kinetic theory. Specifically, it deals with modeling and simulations of biological systems whose dynamics follow the rules of mechanics as well as rules governed by their own ability to organize movement and biological functions. It proposes a new biological model focused on the analysis of competition between cells of an aggressive host and cells of a corresponding immune system. Proposed models are related to the generalized Boltzmann equation. The book may be used for advanced graduate courses and seminars in biological systems modeling.



This book describes the evolution of several socio-biological systems using mathematical kinetic theory. Specifically, it deals with modeling and simulations of biological systems-comprised of large populations of interacting cells-whose dynamics follow the rules of mechanics as well as rules governed by their own ability to organize movement and biological functions. The authors propose a new biological model for the analysis of competition between cells of an aggressive host and cells of a corresponding immune system.

Because the microscopic description of a biological system is far more complex than that of a physical system of inert matter, a higher level of analysis is needed to deal with such complexity. Mathematical models using kinetic theory may represent a way to deal with such complexity, allowing for an understanding of phenomena of nonequilibrium statistical mechanics not described by the traditional macroscopic approach. The proposed models are related to the generalized Boltzmann equation and describe the population dynamics of several interacting elements (kinetic populations models).

The particular models proposed by the authors are based on a framework related to a system of integro-differential equations, defining the evolution of the distribution function over the microscopic state of each element in a given system. Macroscopic information on the behavior of the system is obtained from suitable moments of the distribution function over the microscopic states of the elements involved. The book follows a classical research approach applied to modeling real systems, linking the observation of biological phenomena, collection of experimental data, modeling, and computational simulations to validate the proposed models. Qualitative analysis techniques are used to identify the prediction ability of specific models.

The book will be a valuable resource for applied mathematicians as well as researchers in the field of biological sciences. It may be used for advanced graduate courses and seminars in biological systems modeling with applications to collective social behavior, immunology, and epidemiology.


ContentsandScienti?cAims The scienti?c community is aware that the great scienti?c revolution of this century will be the mathematical formalization, by methods of applied mathematics, of complex biological systems. A fascinating prospect is that biological sciences will ?nally be supported by rigorous investigation me- ods and tools, similar to what happened in the past two centuries in the case of mechanical and physical sciences. It is not an easy task, considering that new mathematical methods maybeneededtodealwiththeinnercomplexityofbiologicalsystemswhich exhibit features and behaviors very di?erent from those of inert matter. Microscopic entities in biology, say cells in a multicellular system, are characterized by biological functions and the ability to organize their dynamics and interactions with other cells. Indeed, cells organize their dynamics according to the above functions, while classical particles follow deterministic laws of Newtonian mechanics. Cells have a life according to a cell cycle which ends up with a programmed death. The dialogue among cells can modify their behavior. The activity of cells includes proliferation and/or destructive events which may, in some cases, result in dangerously reproductive events. Finally, a cellular system may move far from eq- librium in physical situations where classical particles generally show a tendency toward equilibrium. An additional source of complexity is that biological systems always need a multiscale approach. Speci?cally, the dynamics of a cell, including its life, are ruled by sub-cellular entities, while most of the phenomena can be e?ectively observed only at the macroscopic scale.

This book describes the evolution of several socio-biological systems using mathematical kinetic theory. Specifically, it deals with modeling and simulations of biological systems—comprised of large populations of interacting cells—whose dynamics follow the rules of mechanics as well as rules governed by their own ability to organize movement and biological functions. The authors propose a new biological model for the analysis of competition between cells of an aggressive host and cells of a corresponding immune system. Because the microscopic description of a biological system is far more complex than that of a physical system of inert matter, a higher level of analysis is needed to deal with such complexity. Mathematical models using kinetic theory may represent a way to deal with such complexity, allowing for an understanding of phenomena of nonequilibrium statistical mechanics not described by the traditional macroscopic approach. The proposed models are related to the generalized Boltzmann equation and describe the population dynamics of several interacting elements (kinetic populations models). The particular models proposed by the authors are based on a framework related to a system of integro-differential equations, defining the evolution of the distribution function over the microscopic state of each element in a given system. Macroscopic information on the behavior of the system is obtained from suitable moments of the distribution function over the microscopic states of the elements involved. The book follows a classical research approach applied to modeling real systems, linking the observation of biological phenomena, collection of experimental data, modeling, and computational simulations to validate the proposed models. Qualitative analysis techniques are used to identify the prediction ability of specific models. The book will be a valuable resource for applied mathematicians as well as researchers in the field of biological sciences. It may be used for advanced graduate courses and seminars in biological systems modeling with applications to collective social behavior, immunology, and epidemiology.

Preface.- On the Modelling of Complex Biological Systems.- Mathematical Frameworks of the Generalized Kinetic (Boltzmann) Theory.- Modelling the Immune Competition and Applications.- On the Cauchy Problem.- Simulations, Biological Interpretations, and Further Modelling Perspectives.- Models with Space Structure and Derivation of Macroscopic Equations.- Critical Analysis and Forward Perspectives.- Appendix. Basic Tools of Mathematical Kinetic Theory.- Glossary.- References.- Index

Erscheint lt. Verlag 10.10.2007
Reihe/Serie Modeling and Simulation in Science, Engineering and Technology
Modeling and Simulation in Science, Engineering and Technology
Zusatzinfo XII, 188 p. 47 illus.
Verlagsort Boston
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Angewandte Mathematik
Naturwissenschaften Biologie Evolution
Technik
Schlagworte Calculus • Cells • complex biological systems • generalized Boltzmann models • kinetic population models • mathematical kinetic theory • Mathematical Modeling • Mechanics • Model • Modeling • nonequilibrium statistical mechanics • Radiologieinformationssystem • Simulation
ISBN-10 0-8176-4503-9 / 0817645039
ISBN-13 978-0-8176-4503-8 / 9780817645038
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 3,0 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Trigonometrie, Analytische Geometrie, Algebra, Wahrscheinlichkeit

von Walter Strampp

eBook Download (2024)
De Gruyter (Verlag)
94,95
Angewandte Analysis im Bachelorstudium

von Michael Knorrenschild

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
34,99

von Siegfried Völkel; Horst Bach; Jürgen Schäfer …

eBook Download (2024)
Carl Hanser Verlag GmbH & Co. KG
34,99