Global Geodetic Observing System (eBook)

Meeting the Requirements of a Global Society on a Changing Planet in 2020
eBook Download: PDF
2009 | 2009
XLIV, 332 Seiten
Springer Berlin (Verlag)
978-3-642-02687-4 (ISBN)

Lese- und Medienproben

Global Geodetic Observing System -
Systemvoraussetzungen
149,79 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
The Global Geodetic Observing System (GGOS) has been established by the Int- national Association of Geodesy (IAG) in order to integrate the three fundamental areas of geodesy, so as to monitor geodetic parameters and their temporal varia- ?9 tions, in a global reference frame with a target relative accuracy of 10 or b- ter. These areas, often called 'pillars', deal with the determination and evolution of (a) the Earth's geometry (topography, bathymetry, ice surface, sea level), (b) the Earth's rotation and orientation (polar motion, rotation rate, nutation, etc. ), and (c) the Earth's gravity eld (gravity, geoid). Therefore, Earth Observation on a global scale is at the heart of GGOS's activities, which contributes to Global Change - search through the monitoring, as well as the modeling, of dynamic Earth processes such as, for example, mass and angular momentum exchanges, mass transport and ocean circulation, and changes in sea, land and ice surfaces. To achieve such an - bitious goal, GGOS relies on an integrated network of current and future terrestrial, airborne and satellite systems and technologies. These include: various positioning, navigation, remote sensing and dedicated gravity and altimetry satellite missions; global ground networks of VLBI, SLR, DORIS, GNSS and absolute and relative gravity stations; and airborne gravity, mapping and remote sensing systems.

Foreword 5
Preface 7
Acknowledgments 11
Executive Summary 12
Contents 24
List of Figures 31
List of Tables 34
List of Contributors 35
Introduction 41
H.-P. Plag, G. Beutler, R. Gross, T. A. Herring, C. Rizos, R. Rummel, D. Sahagian, J. Zumberge 41
The challenge: living on a changing, dynamic planet 41
The potential: geodesy's contribution to a global society 42
The observing system: the current development of the Global Geodetic Observing System 47
The strategy: where to go from here 52
The goals, achievements, and tools of modern geodesy 54
H.-P. Plag, Z. Altamimi, S. Bettadpur, G. Beutler, G. Beyerle, A. Cazenave, D. Crossley, A. Donnellan, R. Forsberg, R. Gross, J. Hinderer, A. Komjathy, C. Ma, A. J. Mannucci, C. Noll, A. Nothnagel, E. C. Pavlis, M. Pearlman, P. Poli, U. Schreiber, K. Senior, P. L. Woodworth, S. Zerbini, C. Zuffada 54
Introduction 54
Geodetic reference systems and frames 57
The tools and products of modern geodesy 62
Observing Earth geometry and kinematic 65
Overview 65
Space-geodetic tracking techniques 66
Altimetry 79
GNSS scatterometry and reflectometry 83
Geodetic imaging techniques 89
Observing Earth's rotation 94
Space-geodetic techniques 94
Ring laser gyroscopes 95
Observing Earth's gravity field 97
Superconducting gravimetry 97
Absolute gravimetry 99
Land movements and terrestrial gravimetry 100
Airborne gravimetry 101
Satellite missions 103
Observing time 106
Relativity: proper and coordinate time realized time scales
Geodetic measurements and geodetic coordinates 106
Clocks and geodesy: future trends 107
Ensuring consistency of the observations of geometry, gravity field, and rotation 108
Consistency through co-location 108
Consistency of data collection and processing: conventions 111
Essential additional observations and applications 113
Atmospheric sounding 113
Ionospheric remote sensing: one person's signal is another person's noise 116
Tide gauges 119
Geodetic time and frequency transfer 126
Understanding a dynamic planet: Earth science requirements for geodesy 128
R. Rummel, G. Beutler, V. Dehant, R. Gross, K. H. Ilk, H.-P. Plag, P. Poli, M. Rothacher, S. Stein, R. Thomas, P.L. Woodworth, S. Zerbini and V. Zlotnicki 128
Introduction 128
The scientific and technological challenges for GGOS 129
Solid Earth physics 133
Plate motion 136
Earthquake and volcano physics 138
Deep Earth dynamics 140
Surface loading 141
The cryosphere 142
Ocean processes and their climatological implications 144
Providing the reference frame and the means for precise positioning 144
Altimetry and ocean circulation 145
Satellite gravity, ocean circulation and climate 146
Synergistic combination of measurements 147
Future needs 147
Studies of weather and climate processes 148
Geo-referencing of all meteorological observations 148
Providing atmospheric weather models with space- and time-varying gravity fields 149
Collecting observations of the upper-atmospheric mass and lower tropospheric water vapor fields 149
Tracking global change in the atmosphere 150
Sea level change 151
Geo-location of sea and land levels and their changes 152
Understanding sea level change 153
The hydrological cycle 156
Mass transport and mass anomalies in the Earth system 157
Mass redistributions and geodesy 158
Earth rotation: understanding Earth system dynamics 162
Earth rotation measurements 162
UT1 and Length-of-Day Variations 163
Polar Motion 166
Earth rotation: understanding processes in the solid Earth 169
Earth's interior from Earth rotation 169
Geophysical fluids from Earth rotation 170
General remarks 171
Maintaining a modern society 173
C. Rizos, D. Brzezinska, R. Forsberg, G. Johnston, S. Kenyon, D. Smith 173
Spatial data infrastructure 173
Navigation 177
Marine navigation 178
Air navigation 178
Land navigation 179
Engineering, surveying and mapping 179
Machine guidance 180
Land titling and development 181
Engineering geodesy and structural monitoring 181
Geographic information systems 182
Height systems 183
Timing applications 184
Early warning and emergency management 184
Infomobility 185
Management of and access to natural resources 187
Water management and hydrology 187
Energy resources 188
Monitoring the environment and improving predictability 188
GNSS meteorology 189
Space weather 189
Earth observation: Serving the needs of an increasingly global society 191
D. Sahagian, D. Alsdorf, C. Kreemer, J. Melack, M. Pearlman, H.-P. Plag, P. Poli, S. Reid, M. Rodell, R. Thomas, P. L. Woodworth 191
The current and future framework of global Earth observations 191
Disasters: Reducing loss of life and property from natural and human-made disasters 194
Landslides, rock falls and subsidence 195
Volcanic eruptions 197
Earthquakes 197
Tsunamis 198
Storm surges 203
Flooding 203
The slowly developing disasters: sea level rise 204
Energy Resources: Improving management of energy resources 207
Climate change: Understanding, assessing, predicting, mitigating, and adopting to climate variability and change 209
Water: Improving water resource management through better understanding of the water cycle 213
The global hydrological cycle 213
Water for life: the challenge of water management 214
Observations of the Global Water Cycle 216
Slow branch challenges 218
Fast branch challenges 224
Weather: Improving weather information, forecasting,and warning 228
Ecosystems: Improving the management and protection of terrestrial, coastal, and marine ecosystems 230
Measurements of CO2 spatial and temporal distribution to better understand the Earth's carbon cycle 230
Monitoring wetlands 231
Agriculture: Supporting sustainable agriculture and combating desertification 231
Monitoring deforestation and logging 232
Agricultural land cover and land use 233
Precision farming 233
Geodesy: Foundation for exploring the planets, the solar system and beyond 235
J. F. Zumberge, J. S. Border, V. Dehant, W. M. Folkner, D. L. Jones,T. Martin-Mur, J. Oberst, J. G. Williams, X. Wu 235
Planetary geodesy 235
Planetary rotation and interior properties 236
Example: Mars 237
Example: Earth's Moon 238
Example: Europa 239
Planetary mapping 239
Radio science and interferometry 240
Interplanetary navigation 241
Current and future tracking data types 241
Interplanetary trajectory determination 244
Current and future requirements of GGOS for interplanetary navigation 245
Integrated scientific and societal user requirements and functional specifications for the GGOS 246
R. Gross, G. Beutler, H.-P. Plag 246
Introduction 246
Summary of user requirements 247
Societal applications 247
Earth observations 247
Natural hazards 248
Earth science 248
Lunar and planetary science 249
Quantitative requirements 251
Tasks of GGOS 256
Products available through GGOS 256
Accuracy of GGOS products 257
Functional specification for GGOS 258
Determination, maintenance, and access to the global terrestrial reference frame 258
Earth rotation 260
Earth's gravity field 260
Earth system monitoring: mass transport and mass redistribution 260
Determination, maintenance, and access to the celestial reference frame 261
Operational specifications for GGOS 261
The future geodetic reference frame 262
T. A. Herring, Z. Altamimi, H.-P. Plag, P. Poli 262
Introduction 262
Concept of reference system and reference frame 263
Future reference frame formulations 266
Origin and orientation of the TRS 268
Scientific challenge of the future reference frame: the need for an Earth system model 268
Towards an Earth system model 269
The future Global Geodetic Observing System 274
M. Rothacher, G. Beutler, D. Behrend, A. Donnellan, J. Hinderer, C. Ma, C. Noll, J. Oberst, M. Pearlman, H.-P. Plag, B. Richter, T. Schöne, G. Tavernier, P. L. Woodworth 274
The overall system design 274
The overall observing system design: the five levels 277
Level 1: Ground-based infrastructure 278
Core network of co-located stations 278
VLBI station network 279
SLR/LLR station network 280
GNSS station network 282
DORIS station network 283
Networks of gravimeters 284
Network of tide gauge stations and oceanbottom geodesy 284
Co-location of instruments and auxiliary sensors 285
Level 2: Low Earth Orbiter satellite missionsand their applications 286
Gravity satellite missions 287
Ocean and ice altimetry satellite missions 288
InSAR and optical satellite missions 289
Future satellite mission concepts 290
Co-location onboard satellites 292
Airborne and shipborne sensors 292
Level 3: GNSS and laser ranging satellites 293
Global Navigation Satellite Systems 293
Laser ranging satellites 294
Level 4: planetary missions 294
Level 5: extragalactic objects 296
GGOS data flow: from measurements to users 297
Data centers and data flow 297
Synergies between observing techniques 299
Operating centers and communications 299
Future technologies and capabilitiesfor data infrastructure 300
GGOS User Interface: Database, Portal, and Clearinghouse 301
GGOS Portal architecture 302
GGOS Portal goals and objectives 304
A GGOS clearinghouse mechanism for geodesy 304
Data analysis, combination, modeling, and products 307
Towards GGOS in 2020 310
G. Beutler, M. Pearlman, H.-P. Plag, R. Neilan, M. Rothacher, R. Rummel 310
The GGOS high-level components 310
Building on the heritage 311
Level 1: the terrestrial geodetic infrastructure 311
Level 2: the LEO satellite missions 313
Level 3: the GNSS and SLR satellites 314
Level 4: lunar and planetary ``geodesy'' and missions 314
Level 5: the extragalactic objects 315
Organizational considerations 315
History 315
The revolution invoked by space geodesy 315
Current situation 316
Internal organization of GGOS 316
Integration of relevant regional activities 317
Integration of GGOS into global programs 317
Recommendations 319
H.-P. Plag, G. Beutler, R. Gross, T. A. Herring, P. Poli, C. Rizos, M. Rothacher, R. Rummel, D. Sahagian, J. Zumberge 319
References 328
References 328
Acronyms and abbreviations 354
Index 360

Erscheint lt. Verlag 25.7.2009
Zusatzinfo XLIV, 332 p.
Verlagsort Berlin
Sprache englisch
Themenwelt Naturwissenschaften Geowissenschaften Geografie / Kartografie
Naturwissenschaften Geowissenschaften Geologie
Technik
Schlagworte Earth observation • earth sciences • Geodesy • global change • space geodesy
ISBN-10 3-642-02687-7 / 3642026877
ISBN-13 978-3-642-02687-4 / 9783642026874
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 12,0 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Olaf Kühne; Florian Weber; Karsten Berr; Corinna Jenal

eBook Download (2024)
Springer Fachmedien Wiesbaden (Verlag)
109,99
Inwertsetzung und Schutz unseres Geo-Erbes

von Heidi Elisabeth Megerle

eBook Download (2024)
Springer Fachmedien Wiesbaden (Verlag)
59,99