Developmental Plasticity of Inhibitory Circuitry (eBook)

Sarah L. Pallas (Herausgeber)

eBook Download: PDF
2009 | 2010
XI, 190 Seiten
Springer US (Verlag)
978-1-4419-1243-5 (ISBN)

Lese- und Medienproben

Developmental Plasticity of Inhibitory Circuitry -
Systemvoraussetzungen
149,79 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Neuroscience has long been focused on understanding neural plasticity in both development and adulthood. Experimental work in this area has focused almost entirely on plasticity at excitatory synapses. A growing body of evidence suggests that plasticity at inhibitory GABAergic and glycinergic synapses is of critical importance during both development and aging.

The book brings together the work of researchers investigating inhibitory plasticity at many levels of analysis and in several different preparations. This topic is of wide relevance across a number of different areas of research in neuroscience and neurology. Medical problems such as epilepsy, mental illness, drug abuse, and movement disorders can result from malfunctioning inhibitory circuits. Further, the maturation of inhibitory circuits may trigger the onset of critical periods of neural circuit plasticity, raising the possibility that such plastici periods could be reactivated for medical benefit by manipulating inhibitory circuitry.


Neuroscience has long been focused on understanding neural plasticity in both development and adulthood. Experimental work in this area has focused almost entirely on plasticity at excitatory synapses. A growing body of evidence suggests that plasticity at inhibitory GABAergic and glycinergic synapses is of critical importance during both development and aging.The book brings together the work of researchers investigating inhibitory plasticity at many levels of analysis and in several different preparations. This topic is of wide relevance across a number of different areas of research in neuroscience and neurology. Medical problems such as epilepsy, mental illness, drug abuse, and movement disorders can result from malfunctioning inhibitory circuits. Further, the maturation of inhibitory circuits may trigger the onset of critical periods of neural circuit plasticity, raising the possibility that such plastici periods could be reactivated for medical benefit by manipulating inhibitory circuitry.

Anchor 1 1
Anchor 2 1
Part_I.pdf 10
Pallas_Ch01.pdf 11
Chapter 1 11
Introduction 11
1.1 Hemifield Neglect? 11
1.2 “Inhibition” is Excitatory Early in Development 12
1.3 Mechanisms of Inhibitory Plasticity are Highly Diverse 12
1.3.1 Co-Transmitters 13
1.3.2 Changes in Receptor Subunit Composition 13
1.3.3 DSI 13
1.3.4 Inhibitory STDP 14
1.3.5 Receptor Trafficking 14
1.4 Homeostatic Plasticity 14
1.5 Critical Periods 15
1.6 Old Dogs and New Tricks: Adult Plasticity and Aging 15
1.7 Conclusions and Future Directions 16
References 18
Pallas_Ch02.pdf 21
Chapter 2 21
The Origins and Specification of Cortical Interneurons 21
2.1 Introduction 21
2.2 Origins of Cortical Interneurons 21
2.2.1 Medial Ganglionic Eminence 22
2.2.2 Caudal Ganglionic Eminence 23
2.2.3 Lateral Ganglionic Eminence 24
2.2.4 Rostral Migratory Stream 24
2.2.5 Septal Region 25
2.2.6 Cortex 25
2.3 Birthdating of Cortical Interneurons 26
2.4 Specification of Cortical Interneurons 26
2.4.1 Generation of Interneuron Diversity Within the MGE 28
References 30
Pallas_Ch03.pdf 35
Chapter 3 35
Role of Spontaneous Activity in the Maturation of GABAergic Synapses in Embryonic Spinal Circuits 35
References 45
Part_II.pdf 48
Pallas_Ch04.pdf 49
Chapter 4 49
Regulation of Inhibitory Synapse Function in the Developing Auditory CNS 49
4.1 Spontaneous and Sound-Evoked Activity During Development 50
4.2 Perturbation of Auditory System Activity Alters Inhibition 51
4.3 Developmental Regulation of Inhibitory Synapses in the Lateral Superior Olive 52
4.4 Developmental Regulation of Inhibitory Synapse Gain in the Inferior Colliculus 56
4.5 Developmental Regulation of Inhibitory Synapse Gain in the Auditory Cortex 59
4.6 Summary 62
4.6.1 Heirarchical Modification of Inhibitory Function 64
4.6.2 Cellular Mechanisms that Regulate Inhibitory Gain 65
4.6.3 Effect of Inhibitory Gain on Auditory Processing 66
References 68
Pallas_Ch05.pdf 76
Chapter 5 76
Developmental Plasticity of Inhibitory Receptive Field Properties in the Auditory and Visual Systems 76
5.1 Introduction 76
5.1.1 Inhibitory Plasticity in the Hamster Superior Colliculus 77
5.1.2 Surround Inhibition Shapes Velocity Tuning in the SC 77
5.1.3 Effects of Modifying Retinocollicular Convergence on Surround Inhibition During Development 79
5.1.4 Surround Inhibition Plays a Larger Role in Velocity Tuning After Chronic NMDAR Blockade 81
5.1.5 Plasticity of Inhibition Underlying Vocalization Selectivity in the Auditory Cortex 81
5.1.6 Asymmetries in Sideband Inhibition Shape FM Rate and Direction Selectivity in Adults 83
5.1.7 Developmental Plasticity of Inhibition Underlying FM Rate and Direction Selectivity 83
5.1.8 Experience-Dependent Plasticity of Inhibition Shaping Rate and Direction Selectivity 84
5.1.9 Normal Experience is Required for the Maintenance of FM Rate Selectivity and HFI 84
5.1.10 Experience is Required for Development and Maintenance of Direction Selectivity and LFI 85
5.2 Discussion 86
5.2.1 The Contribution of Surround Inhibition to RF Properties Across Sensory Systems 86
5.2.2 Previous Studies on the Role of Inhibitory Plasticity in the Development of Response Selectivity 87
5.2.3 Homeostatic Plasticity of Inhibition: Beyond Response Magnitude Stability 88
5.2.4 Possible Synaptic Mechanisms of Plasticity in Strength and Timing of Inhibition 89
5.2.5 Role of Experience During Development: Maintenance Versus Refinement 90
5.2.6 Future Directions 91
References 91
Pallas_Ch06.pdf 95
Chapter 6 95
Postnatal Maturation and Experience-Dependent Plasticity of Inhibitory Circuits in Barrel Cortex 95
6.1 Postnatal Maturation and Plasticity of Electrical Properties of Interneurons in the Barrel Cortex 96
6.1.1 Postnatal Maturation of Electrical Properties in Neocortical Interneurons 96
6.1.1.1 Maturation of FS and RS-Type Firing Phenotypes 97
6.1.1.2 Maturation of BS or LTS Firing Phenotypes 99
6.1.2 Increases in Dendritic Gap Junction (GJ) Coupling During Postnatal Maturation 99
6.1.3 Experience-Dependent Maturation of Electrophysiological Properties of Inhibitory Interneurons 99
6.2 Postnatal Maturation of Intracortical Inhibitory Synaptic Transmission in the Barrel Cortex 100
6.2.1 Early Postnatal Development of the GABA System and its Role in Circuit Formation in the Barrel Cortex 100
6.2.1.1 Synthetic Enzymes for GABA Exhibit Different Expression Patterns 100
6.2.1.2 GABA-Mediated Synaptic Transmission in the Early Postnatal Period 101
6.2.2 Late Postnatal and Experience-Dependent Maturation of Inhibitory Circuits in the Barrel Cortex 102
6.2.2.1 Presynaptic Maturation 102
6.2.2.2 Postsynaptic maturation 102
6.2.2.3 Experience-Dependent Postnatal Maturation 102
6.2.3 Interneurons involved in sensory feed-forward inhibition in the barrel cortex and the consequences of their functional 103
6.3 Does the Maturation of Neocortical Inhibitory Networks Proceed in an Activity-Dependent Manner or Independently of Sensor 104
6.3.1 Experience-Dependent Plasticity of GABAergic Circuits in the Barrel Cortex 104
6.3.1.1 Sensory Deprivation (Whisker-Trimming) 104
6.3.1.2 Whisker Stimulation 107
6.3.2 Activity-Independent Maturation and Plasticity of GABAergic Circuits 107
6.4 Molecular Mechanisms Underlying Experience-Dependent Plasticity of Inhibitory Circuits in the Barrel Cortex 108
6.4.1 The Roles of Metabotropic and Ionotropic Glutamate Receptors 108
6.4.1.1 N-Methyl-D-Aspartate Receptors (NMDARs) 108
6.4.1.2 Metabotropic Glutamate Receptors (mGluRs) 109
6.4.2 Transcriptional Factors and Maturation of Inhibitory Circuits 109
6.4.3 The Roles of GABA and GAD 110
6.5 Concluding Remarks 111
References 112
Part_III.pdf 116
Pallas_Ch07.pdf 117
Chapter 7 117
GABAergic Transmission and Neuronal Network Events During Hippocampal Development 117
7.1 Introduction 117
7.2 GABAergic Transmission in the Immature Hippocampus 119
7.2.1 Tonic Actions of GABA 119
7.2.2 Trophic Actions of GABA 120
7.2.3 Ion Transport and the Control of EGABA in Hippocampal Neurons 120
7.2.3.1 Uptake of Chloride: NKCC1 121
7.2.3.2 Extrusion of Chloride: KCC2 121
7.2.3.3 Bicarbonate and EGABA 122
7.3 Ontogeny of Hippocampal Network Events 122
7.4 Characteristics of “Giant Depolarizing Potentials” in the Rat Hippocampus In Vitro 124
7.5 Synaptic and Cellular Mechanisms Underlying GDP Generation 125
7.5.1 GDPs and the Developmental Shift in GABA Action in Rat Hippocampal Slices 125
7.5.2 Glutamatergic Transmission and GDPs 127
7.5.3 Intrinsic Bursting of CA3 Pyramidal Neurons 127
7.5.4 CA3 Pyramidal Neurons as Conditional Pacemakers in GDP Generation 129
7.6 Conclusions 130
References 131
Pallas_Ch08.pdf 139
Chapter 8 139
Endocannabinoids and Inhibitory Synaptic Plasticity in Hippocampus and Cerebellum 139
8.1 Introduction 139
8.1.1 Introduction to eCBs: History and Pharmacology 139
8.2 Basic Neurophysiology of eCBs 141
8.2.1 Retrograde Signaling 141
8.2.2 Depolarization-Induced Suppression of Inhibition 141
8.2.3 GPCR-Dependent eCB Mobilization 142
8.2.4 Are eCBs Really Retrograde Messengers? 143
8.2.5 ECB Mobilization 145
8.2.6 Pre-endocannabinoid DSI and eCBs 145
8.2.7 Timing of eCB Mobilization 145
8.2.8 2-AG is Probably the Main eCB in Hippocampus and Cerebellum 146
8.2.9 CB1R on Glutamatergic Terminals: Depolarization-Induced Suppression of Excitation 147
8.2.10 eCBs and Brain Development 148
8.2.10.1 eCBs Affect Interneuronal Connectivity 148
8.2.10.2 In Early Development eCBs Decrease Network Excitability 148
8.2.11 Interneurons Release eCBs 149
8.2.11.1 Interneuronal DSE and DSI 149
8.2.11.2 eCB Mediated Self-Inhibition of Interneurons 150
8.3 Basic Neurophysiology of eCBs and Synaptic Plasticity 150
8.3.1 Use-Dependent Regulation of eCB Effects on Inhibition 150
8.3.1.1 Increases in Probability of GABA Release Decrease Presynaptic eCB Effects 150
8.3.1.2 Tonic CB1R Activation 150
8.3.1.3 Activity-Dependent Increases in eCB Responses 151
8.3.2 DSI in LTP 151
8.3.3 Inhibitory Long-Term Depression 152
8.3.4 Relationship of the eCB System to Exogenous Cannabinoids 156
8.3.5 Spike-Timing Dependent Plasticity 156
8.3.6 eCBs and Seizures 157
8.4 Development and eCBs 158
8.5 Synergy with Nitric Oxide System 159
8.6 Conclusions 160
References 160
Part_IV.pdf 167
Pallas_Ch09.pdf 168
Chapter 9 168
Interneuron Pathophysiologies: Paths to Neurodevelopmental Disorders 168
9.1 Introduction 168
9.2 Brain-Based Disorders 170
9.2.1 Epilepsy 170
9.2.2 Schizophrenia 173
9.2.3 Autism Spectrum Disorder 174
9.2.4 Other Developmental Disorders 175
9.2.4.1 Tuberous Sclerosis 175
9.2.4.2 Fragile X 175
9.2.4.3 15q11–q13 and Gene Regulatory Disorders: Prader–Willi, Angelman, and Rett Syndromes 176
9.2.4.4 Intellectual Disability 178
9.3 Conclusions 178
References 179
Pallas_Backmatter.pdf 186

Erscheint lt. Verlag 9.12.2009
Zusatzinfo XI, 190 p.
Verlagsort New York
Sprache englisch
Themenwelt Medizin / Pharmazie Medizinische Fachgebiete Neurologie
Medizin / Pharmazie Physiotherapie / Ergotherapie
Studium 1. Studienabschnitt (Vorklinik) Biochemie / Molekularbiologie
Naturwissenschaften Biologie Genetik / Molekularbiologie
Naturwissenschaften Biologie Humanbiologie
Naturwissenschaften Biologie Zoologie
Technik
Schlagworte auditory development • Cortex • developmental plasticity • GABA • Inhibition • Neurology • Neuron • Physiology • rehabilitation psychology • synaptic plasticity • visual development
ISBN-10 1-4419-1243-6 / 1441912436
ISBN-13 978-1-4419-1243-5 / 9781441912435
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 5,5 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Das Lehrbuch für das Medizinstudium

von Florian Horn

eBook Download (2020)
Georg Thieme Verlag KG
69,99
Das Lehrbuch für das Medizinstudium

von Florian Horn

eBook Download (2020)
Georg Thieme Verlag KG
69,99