Photoemission from Optoelectronic Materials and their Nanostructures (eBook)

eBook Download: PDF
2010 | 2009
XIX, 329 Seiten
Springer New York (Verlag)
978-0-387-78606-3 (ISBN)

Lese- und Medienproben

Photoemission from Optoelectronic Materials and their Nanostructures - Kamakhya Prasad Ghatak, Sitangshu Bhattacharya, Debashis De
Systemvoraussetzungen
192,59 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
In recent years, with the advent of fine line lithographical methods, molecular beam epitaxy, organometallic vapour phase epitaxy and other experimental techniques, low dimensional structures having quantum confinement in one, two and three dimensions (such as ultrathin films, inversion layers, accumulation layers, quantum well superlattices, quantum well wires, quantum wires superlattices, magneto-size quantizations, and quantum dots) have attracted much attention not only for their potential in uncovering new phenomena in nanoscience and technology, but also for their interesting applications in the areas of quantum effect devices. In ultrathin films, the restriction of the motion of the carriers in the direction normal to the film leads to the quantum size effect and such systems find extensive applications in quantum well lasers, field effect transistors, high speed digital networks and also in other quantum effect devices. In quantum well wires, the carriers are quantized in two transverse directions and only one-dimensional motion of the carriers is allowed.
In recent years, with the advent of fine line lithographical methods, molecular beam epitaxy, organometallic vapour phase epitaxy and other experimental techniques, low dimensional structures having quantum confinement in one, two and three dimensions (such as ultrathin films, inversion layers, accumulation layers, quantum well superlattices, quantum well wires, quantum wires superlattices, magneto-size quantizations, and quantum dots) have attracted much attention not only for their potential in uncovering new phenomena in nanoscience and technology, but also for their interesting applications in the areas of quantum effect devices. In ultrathin films, the restriction of the motion of the carriers in the direction normal to the film leads to the quantum size effect and such systems find extensive applications in quantum well lasers, field effect transistors, high speed digital networks and also in other quantum effect devices. In quantum well wires, the carriers are quantized in two transverse directions and only one-dimensional motion of the carriers is allowed.

Preface 6
Acknowledgments 9
Acknowledgment by Kamakhya Prasad Ghatak 9
Acknowledgment by Sitangshu Bhattacharya 10
Acknowledgment by Debashis De 10
Joint Acknowledgments 10
Contents 11
List of Symbols 15
1 Fundamentals of Photoemission from Wide GapMaterials 18
1.1 Introduction 18
1.2 Theoretical Background 21
1.2.1 Photoemission from Bulk Semiconductors 21
1.2.2 Photoemission Under Magnetic Quantization 9
1.2.3 Photoemission in the Presence of Cross Fields 10
1.2.4 Photoemission from Quantum Wells in Ultrathin Films of Wide Gap Materials 10
1.2.5 Photoemission from Quantum Well Wires of Wide Gap Materials 10
1.2.6 Photoemission from Quantum Dots of Wide Gap Materials 39
1.2.7 Photoemission Under Magneto-Size Quantization (MSQ) 41
1.3 Results and Discussions 42
References 51
2 Fundamentals of Photoemission from Quantum Wells in Ultrathin Films and Quantum Well Wires of Various Nonparabolic Materials 54
2.1 Introduction 54
2.2 Theoretical Background 56
2.2.1 Photoemission from Nonlinear Optical Materials 56
2.2.2 Photoemission from III--V Materials 60
2.2.3 Photoemission from II--VI Compounds 63
2.2.4 Photoemission from n-Gallium Phosphide 65
2.2.5 Photoemission from n-Germanium 67
2.2.6 Photoemission from Platinum Antimonide 73
2.2.7 Photoemission from Stressed Materials 76
2.2.8 Photoemission from Bismuth 79
2.2.8.1 The McClure and Choi Model 79
2.2.8.2 The Hybrid Model 82
2.2.8.3 The Cohen Model 84
2.2.8.4 The Lax Model 87
2.2.9 Photoemission from (n, n) and (n, 0) Carbon Nanotubes 89
2.3 Results and Discussions 90
References 121
3 Fundamentals of Photoemission from Quantum Dots of Various Nonparabolic Materials 124
3.1 Introduction 124
3.2 Theoretical Background 125
3.2.1 Photoemission from Nonlinear Optical Materials 126
3.2.2 Photoemission from III--V Materials 127
3.2.2.1 The Three-Band Model of Kane 127
3.2.2.2 The Two-Band Model of Kane 128
3.2.2.3 The Model of Stillman et al. 129
3.2.2.4 The Model of Newson and Kurobe 130
3.2.2.5 The Model of Rossler 131
3.2.2.6 The Model of Palik et al. 133
3.2.2.7 The Model of Johnson and Dickey 134
3.2.2.8 The Model of Agafonov et al. 135
3.2.3 Photoemission from II--VI Materials 137
3.2.4 Photoemission from n-Gallium Phosphide 138
3.2.5 Photoemission from n-Germanium 139
3.2.6 Photoemission from Tellurium 141
3.2.7 Photoemission from Graphite 143
3.2.8 Photoemission from Platinum Antimonide 145
3.2.9 Photoemission from Zero-Gap Materials 146
3.2.10 Photoemission from Lead Germanium Telluride 148
3.2.11 Photoemission from Gallium Antimonide 149
3.2.12 Photoemission from Stressed Materials 154
3.2.13 Photoemission from Bismuth 155
3.2.13.1 The McClure and Choi Model 155
3.2.13.2 The Hybrid Model 156
3.2.13.3 The Cohen Model 157
3.2.13.4 The Lax Model 158
3.2.14 Photoemission from IV--VI Materials 159
3.2.15 Photoemission from II--V Materials 163
3.2.16 Photoemission from Zinc and Cadmium Diphosphides 164
3.2.17 Photoemission from Bismuth Telluride 166
3.2.18 Photoemission from Quantum Dots of Antimony 167
3.3 Results and Discussions 169
References 187
4 Photoemission from Quantum Confined Semiconductor Superlattices 190
4.1 Introduction 190
4.2 Theoretical Background 191
4.2.1 Magneto-photoemission from III0V Quantum Well Superlattices with Graded Interfaces graded interfaces 191
4.2.2 Magneto-Photoemission from II0VI Quantum Well Superlattices with Graded Interfaces graded interfaces 196
4.2.3 Magneto-Photoemission from IV--VI Quantum Well Superlattices with Graded Interfaces 198
4.2.4 Magneto-Photoemission from HgTe/CdTe Quantum Well Superlattices with Graded Interfaces 202
4.2.5 Magneto-Photoemission from III--V Quantum Well Effective Mass Superlattices 203
4.2.6 Magneto-Photoemission from II--VI Quantum Well Effective Mass Superlattices 205
4.2.7 Magneto-Photoemission from IV--VI Quantum Well Effective Mass Superlattices 208
4.2.8 Magneto-Photoemission from HgTe/CdTe Quantum Well Effective Mass Superlattices 210
4.2.9 Photoemission from III--V Quantum Dot Superlattices with Graded Interfaces 211
4.2.10 Photoemission from II--VI Quantum Dot Superlattices with Graded Interfaces 214
4.2.11 Photoemission from IV--VI Quantum Dot Superlattices with Graded Interfaces 215
4.2.12 Photoemission from HgTe/CdTe Quantum Dot Superlattices with Graded Interfaces 218
4.2.13 Photoemission from III--V Quantum Dot Effective Mass Superlattices 219
4.2.14 Photoemission from II--VI Quantum Dot Effective Mass Superlattices 220
4.2.15 Photoemission from IV--VI Quantum Dot Effective Mass Superlattices 221
4.2.16 Photoemission from HgTe/CdTe Quantum Dot Effective Mass Superlattices 222
4.3 Results and Discussions 223
References 234
5 Photoemission from Bulk Optoelectronic Materials 235
5.1 Introduction 235
5.2 Theoretical Background 235
5.3 Results and Discussions 242
5.4 Open Research Problems 249
References 251
6 Photoemission under Quantizing Magnetic Field from Optoelectronic Materials 252
6.1 Introduction 252
6.2 Theoretical Background 252
6.3 Results and Discussions 254
6.4 Open Research Problems 259
References 260
7 Photoemission from Quantum Wells in Ultrathin Films, Quantum Wires, and Dots of Optoelectronic Materials 261
7.1 Introduction 261
7.2 Theoretical Background 261
7.2.1 Photoemission from Quantum Wells in Ultrathin Films of Optoelectronic Materials 261
7.2.2 Photoemission from Quantum Well Wires of Optoelectronic Materials 264
7.2.3 Photoemission from Quantum Dots of Optoelectronic Materials 265
7.3 Results and Discussions 266
7.4 Open Research Problems 277
Reference 283
8 Photoemission from Quantum Confined Effective Mass Superlattices of Optoelectronic Materials 284
8.1 Introduction 284
8.2 Theoretical Background 284
8.2.1 Magneto-Photoemission from Quantum Well Effective Mass Superlattices 284
8.2.2 Photoemission from Effective Mass Quantum Well Wire Superlattices 288
8.2.3 Photoemission from Quantum Dots of Effective Mass Superlattices 289
8.2.4 Magneto-Photoemission from Effective Mass Superlattices 290
8.3 Results and Discussions 291
8.4 Open Research Problems 303
Reference 304
9 Photoemission from Quantum Confined Superlattices of Optoelectronic Materials with GradedInterfaces 305
9.1 Introduction 305
9.2 Theoretical Background 305
9.2.1 Magneto Photoemission from Quantum Well Superlattices 305
9.2.2 Photoemission from Quantum Well Wire Superlattices 310
9.2.3 Photoemission from Quantum Dot Superlattices 312
9.2.4 Magneto-Photoemission from Superlattices of III-V Optoelectronic Materials 313
9.3 Results and Discussions 313
9.4 Open Research Problems 325
Reference 326
10 Review of Experimental Results 327
10.1 Experimental Works 327
10.2 Open Research Problem 328
References 328
11 Conclusion and Future Research 329
11.1 Open Research Problems 329
Appendix AThe Numerical Values of the Energy BandConstants of a Few Materials 332
Subject Index 338
Materials Index 340

Erscheint lt. Verlag 14.3.2010
Reihe/Serie Nanostructure Science and Technology
Nanostructure Science and Technology
Zusatzinfo XIX, 329 p. 209 illus.
Verlagsort New York
Sprache englisch
Themenwelt Naturwissenschaften Chemie
Naturwissenschaften Physik / Astronomie
Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
Schlagworte currentsam • Einstein • Ghatak • nanostructure • Optoelectronic materials • Photoemission • quantum dot • Quantum dots • quantum wells • Quantum Wires • semiconductor • superlattices • Thin film
ISBN-10 0-387-78606-6 / 0387786066
ISBN-13 978-0-387-78606-3 / 9780387786063
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 11,3 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Eigenschaften, Verarbeitung, Konstruktion

von Erwin Baur; Dietmar Drummer; Tim A. Osswald; Natalie Rudolph

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
69,99