The STEREO Mission (eBook)

C.T. Russell (Herausgeber)

eBook Download: PDF
2008 | 2008
V, 646 Seiten
Springer New York (Verlag)
978-0-387-09649-0 (ISBN)

Lese- und Medienproben

The STEREO Mission -
Systemvoraussetzungen
213,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
C. T. Russell Originally published in the journal Space Science Reviews, Volume 136, Nos 1-4. DOI: 10. 1007/s11214-008-9344-1 © Springer Science+Business Media B. V. 2008 The Sun-Earth Connection is now an accepted fact. It has a signi cant impact on our daily lives, and its underpinnings are being pursued vigorously with missions such as the Solar TErrestrial RElations Observatory, commonly known as STEREO. This was not always so. It was not until the middle of the nineteenth century that Edward Sabine connected the 11-year geomagnetic cycle with Heinrich Schwabe's deduction of a like periodicity in the sunspot record. The clincher for many was Richard Carrington's sighting of a great whi- light are on the Sun, on September 1, 1859, followed by a great geomagnetic storm 18 hours later. But was the Sun-Earth Connection signi cant to terrestrial denizens? Perhaps in 1859 it was not, but a century later it became so. Beginning in the 1930's, as electrical powergrids grew in size, powercompanies began to realize that they occasionally had power blackouts during periods of intense geomagnetic activity. This correlation did not appear to be suf ciently signi cant to bring to the attention of the public but during the International Geophysical Year (IGY), when geomagnetic activity was being scrutinized intensely, the occurrence of a large North American power blackout during a great magnetic storm was impossible to ignore.
C. T. Russell Originally published in the journal Space Science Reviews, Volume 136, Nos 1-4. DOI: 10. 1007/s11214-008-9344-1 (c) Springer Science+Business Media B. V. 2008 The Sun-Earth Connection is now an accepted fact. It has a signi cant impact on our daily lives, and its underpinnings are being pursued vigorously with missions such as the Solar TErrestrial RElations Observatory, commonly known as STEREO. This was not always so. It was not until the middle of the nineteenth century that Edward Sabine connected the 11-year geomagnetic cycle with Heinrich Schwabe's deduction of a like periodicity in the sunspot record. The clincher for many was Richard Carrington's sighting of a great whi- light are on the Sun, on September 1, 1859, followed by a great geomagnetic storm 18 hours later. But was the Sun-Earth Connection signi cant to terrestrial denizens? Perhaps in 1859 it was not, but a century later it became so. Beginning in the 1930's, as electrical powergrids grew in size, powercompanies began to realize that they occasionally had power blackouts during periods of intense geomagnetic activity. This correlation did not appear to be suf ciently signi cant to bring to the attention of the public but during the International Geophysical Year (IGY), when geomagnetic activity was being scrutinized intensely, the occurrence of a large North American power blackout during a great magnetic storm was impossible to ignore.

Foreword 8
Contents 4
The STEREO Mission: An Introduction 11
Abstract 11
Preface: ``Heliophysics: The New Science of the Sun-Solar System Connection'' 12
Introduction 13
History 16
The Science Investigations 17
The STEREO Orbits and Mission Phases 19
STEREO Data and the STEREO Science Center 20
Summary 21
References 21
The STEREO Observatory 23
Abstract 23
Introduction 23
Orbital Characteristics 24
Phasing Orbit Characteristics 25
Instrument Accommodations 28
Instrument Data Volume 31
Spacecraft Bus Overview 32
Observatory Architecture 32
Instrument Operations 35
STEREO Fault Protection (Cancro and Driesman 2004) 37
Observatory Subsystems 38
Power Subsystem 38
Guidance and Control Subsystem Description 39
Pointing Accuracy, Jitter, and Windowed Stability 41
Radio Frequency Telecommunications Subsystem 43
Thermal Control Subsystem 43
Propulsion Subsystem 46
Acknowledgements 49
References 49
STEREO Space Weather and the Space Weather Beacon 51
Abstract 51
Introduction 52
Background on Space Weather 52
CMEs and Space Weather 53
Use of the STEREO Instruments for Space Weather 56
The Space Weather Beacon 58
Space Weather Tools and Projects 62
Space Weather Tools for the SEC Forecast Center 65
Lessons from the SOHO and ACE Missions 65
Bringing STEREO into the Forecast Center 66
Summary 69
References 70
Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) 72
Abstract 73
Introduction 73
Extreme UltraViolet Imager (EUVI) 75
EUVI Telescope Overview 75
Optics 76
Optical Design 76
Mirrors 77
Filters 78
Aliveness Source 78
Mechanical Design 78
Metering Structure 78
Mirror Mounts 79
Instrument Response and Calibration 79
Calibration Results 79
Predicted Response to Solar Phenomena 80
Inner Coronagraph (COR1) 81
COR1 Overview 81
Optical Layout 82
Stray Light Suppression 83
Mechanical and Thermal Design 84
Calibration and Performance Results 85
Outer Coronagraph (COR2) 88
Optical Design 88
Mechanical and Thermal Design 90
Calibration and Performance Results 91
Operations 92
The Heliospheric Imagers (HI) 93
Instrument Concept 93
Baffle Design 94
Optical Systems 96
Mechanical Structure 96
Operations 97
Guide Telescope 98
SCIP Bench 99
SCIP Flexure Mounts 100
Analysis and Testing 100
Mechanisms 101
SCIP Aperture Doors 101
Shutters 102
Quadrant Selector 102
EUVI Filter Wheel 102
Polarizer Wheel 103
Lifetime Requirements 103
SECCHI Electronics 103
The SECCHI Electronics Box (SEB) 103
Motherboard 104
Electrical Power 104
RAD750 Processor 105
MIL-STD-1553 Interface Card (1553) 105
SpaceWire Interface Card (SWIC) 105
Housekeeping Card (HKP) 106
Enclosure 106
Mechanism Electronics Box (MEB) 106
Charge Couple Device (CCD) Cameras 107
CCD Detectors 107
Focal Plane Assembly (FPA) 107
Camera Electronics Box (CEB) 109
Clear 111
Integration 111
Readout 112
Flight Software 112
Flight Software Overview 112
Instrument Scheduling 112
Image Processing 113
SECCHI Concept of Operations 114
Overview 114
SECCHI Data Allocation and SSR utilization 115
Observation Planning 116
Beacon Mode 117
SECCHI Campaigns 117
Routine Processing and Data Products 117
SECCHI Data Policy 118
Acknowledgements 118
References 119
STEREO IMPACT Investigation Goals, Measurements, and Data Products Overview 121
Abstract 121
List of acronyms 122
Introduction to the IMPACT Investigation 122
IMPACT Science Objectives 125
Reconstructing 3D Pictures of CMEs and Their Interplanetary Consequences 125
Coronal Connections 125
Interplanetary Consequences 130
The Relationship of the 3D Corona to Solar Wind Structure 133
SEP Acceleration and Propagation 134
The Solar Origins of Geoeffectiveness 138
The Solar Magnetic Cycle 139
Complementary Science Objectives 141
Space Plasma Microphysics 141
CIRs and SIRs 141
ACRs 142
Reconnection Physics 142
Space Weather Applications 143
Relationships to Other Missions and Ground-Based Observations 143
IMPACT Instruments Overview 145
Overview and Spacecraft Accommodation 145
Boom Suite 146
SWEA (Solar Wind Electron Analyzer) 146
STE (Suprathermal Electron Telescope) 150
MAG (Magnetometer) 153
SEP Suite 154
SEPT (Solar Electron and Proton Telescope) 154
SIT (Suprathermal Ion Telescope) 156
LET (Low Energy Telescope) 157
HET (High Energy Telescope) 159
IDPU 160
IMPACT Operations and Data Plans 162
IMPACT Payload Operations Center 162
Security 163
Design of POC System 164
Configuration Management 168
Phasing Orbit Operations 169
Normal Operations 169
Data Products, Access, and Analysis Plans 170
Data Product Descriptions and Content 170
Level Zero 170
Level 1 170
Level 2 172
Level 3 173
Beacon Data 173
Complementary L1 In Situ Data Sets 173
Data Access and Browsers 173
STEREO Science Center Beacon and Archive Access 173
UCB Data Portal 175
UCLA Data Portal 175
Data Analysis Plans 176
Expected Impact and Relevance to Heliophysics 184
Acknowledgements 184
References 184
The STEREO IMPACT Boom 189
Abstract 189
Introduction 189
Instruments on the IMPACT Boom 190
IMPACT Boom Mechanism 192
Tube Details 193
Lock Pin Details 195
Shape Memory Alloy Release (SMAR) Details 195
Flyweight Brake 196
Harness and Spool 197
The Stacer 197
Deployment Sequence 199
Verification 200
Counterweight Description 202
Magnetometer Alignment Verification 203
Summary 204
Acknowledgements 204
References 205
The STEREO/IMPACT Magnetic Field Experiment 206
Abstract 206
Introduction 207
Science Objectives 210
CME Identification and Structure 210
CME-Driven Interplanetary Shocks 211
Acceleration of Particles at Interplanetary Shocks 212
Global Structure of the IMF 214
Space Weather 214
IMPACT/MAGNETOMETER Performance Requirements 215
Hardware Description 217
Analog Electronics 217
Sigma-Delta A/D Conversion 219
Control Logic and Interface to the IDPU 219
IDPU Magnetometer Software 219
Range Control Strategy 220
Internal Calibration 220
Preflight Calibration and Testing 221
Scale Factors, Offsets and Alignment 221
Frequency Response and Timing 222
Environmental Testing 222
Spacecraft Magnetics Control Program 223
Flight Checkout and Performance 224
Magnetometer Ground Data Processing 225
Acknowledgements 228
References 228
The IMPACT Solar Wind Electron Analyzer (SWEA) 230
Abstract 230
Introduction 230
Scientific Objectives 231
Instrument Overview 234
Electrostatic Analyzers and Deflectors 236
Calibrations 238
Digital Electronics 239
Experiment Modes of Operations 241
Summary 241
Acknowledgements 241
References 242
The STEREO IMPACT Suprathermal Electron (STE) Instrument 243
Abstract 243
Introduction 244
Scientific Objectives 244
Instrument Overview 246
Silicon Semiconductor Detectors (SSDs) 249
Electronics 249
Mechanical 251
Calibration 253
Modes of Operation & Data Format
Acknowledgements 256
References 257
The Low-Energy Telescope (LET) and SEP Central Electronics for the STEREO Mission 286
Abstract 286
Introduction 289
Science Objectives 291
SEP Acceleration by CME-Driven Shocks 292
Comparison of SEP and CME Kinetic Energies 299
Impulsive Solar Energetic Particle Events 301
Space Weather 304
An Interplanetary SEP Network 304
Characterizing the 1-AU Radiation Environment 306
Acceleration by CIRs and ESP Events 306
Corotating Interaction Regions 306
Energetic Storm Particles 307
Anomalous Cosmic Rays 307
Instrumentation 309
Design Requirements 309
Approach 309
The LET Sensor System 310
Silicon Detectors 315
Electronics 318
The PHASIC 318
The Minimal Instruction Set Computer (MISC) 320
Onboard Processing 321
Coincidence Logic 321
Nominal Detector Thresholds 321
Dynamic Thresholds 324
Onboard Particle Identification System 326
The Priority System 329
Livetime Measurement 330
LET Data 331
LET Beacon Data 331
The Command System 332
Mechanical and Thermal Design 333
Mechanical Design 333
Thermal Design 336
Resources 337
Electrical GSE 338
Calibrations and Performance 338
Electronic Calibrations 338
Accelerator End-to-End Test and Calibration 339
Radioactive Source Tests 341
In-Flight Particle Calibrations 341
Monte Carlo Simulations 342
Energy Range and Collecting Power 343
Anisotropy Measurements 344
Solar Energetic Particle Yields 347
In-Flight Performance 348
SEP Central 348
SEP Central Overview 348
Power-On and Boot Procedures 349
SEP Telemetry Data 349
Acknowledgements 350
Appendix 1: L1 Detector Thicknesses 351
Appendix 2: Event Classes and Coincidence Conditions 352
Appendix 3: Rates, Particle IDs, and Event Data 354
Appendix 4: LET Variables 359
References 361
The Solar Electron and Proton Telescope for the STEREO Mission 364
Abstract 364
Introduction 364
Science Objectives 365
SEP Acceleration 365
Comparing Gradual and Impulsive SEP Events 367
ICME Topology 368
Space Weather 368
Instrument Description 369
Approach 369
Design Requirements 369
The Detector System 369
The Solid State Detectors 371
The Magnet System 371
The Absorption Foil 372
The Onboard Electronics 373
PDFE 373
FPGA 373
Coincidence Logic 377
SEPT Telemetry Products 377
SEPT Beacon Mode Data 378
SEPT Commands 378
Mission Operations 378
Mechanical and Thermal Design 380
Electrical GSE 381
Calibrations and Performance 381
Electronic Calibration 381
Source Tests 381
Accelerator Calibration 384
Response to Alpha Particles 387
In-Flight Test and Calibration 387
Monte Carlo Simulation 388
Acknowledgements 389
References 389
The High Energy Telescope for STEREO 391
Abstract 391
Introduction 393
STEREO/IMPACT/SEP/HET 393
Scientific Goals 395
Design Requirements 401
Instrument Description 401
HET Detectors 401
H1, H2 Detectors 402
HET Stack Detectors 404
Detector Testing 404
HET Telescope 406
HET Electronics 407
Introduction 407
PHASICs 409
Cross-Talk 411
MISC and Front-End Logic 413
Geometry Factors 414
Stopping Particles 414
Penetrating Particles 414
Onboard Software 414
Introduction 414
Flight Software Architecture 416
Flight Software Development Environment 416
Onboard Particle Processing 417
Command Processing 422
High-Rate Strategy 423
High-Rate Mode 423
Livetimes 424
Telemetry Formatting 424
Packet Strategy 424
Beacon Packet 426
Housekeeping Packet 426
HET Resources 426
System Level Tests 427
Bench Tests 427
Accelerator Runs 427
Post-Launch Data 427
Acknowledgements 429
Appendix: Nominal HET software counters 432
References 435
The Plasma and Suprathermal Ion Composition (PLASTIC) Investigation on the STEREO Observatories 436
Abstract 436
Introduction 437
STEREO PLASTIC Scientific Objectives 438
Solar Processes and Solar Wind Studies 438
Interplanetary Manifestations of Coronal Mass Ejections (ICME) 439
CME Structure on the Sun and Related In Situ Signatures 440
ICME Boundaries 440
The Evolution of ICMEs in the Inner Heliosphere 441
Injection and Acceleration of Ions at CME-Driven Shocks 441
Heliospheric Studies 443
Stream Interaction Regions and Heliospheric Current Sheet 443
Particle Acceleration at Corotating Interaction Regions 443
Pickup Ions 444
Space Weather 444
Instrument Description 445
Overview 445
Principles of Operation 446
Entrance System / Energy Analyzer (E/Q, Elevation Angle, and GF) 448
Entrance System / Energy Analyzer Overview 448
Characterization of the Entrance System / Energy Analyzer 451
Time-of-Flight Measurement System 453
TOF/E Chamber Overview 453
Design of the TOF/E Chamber 456
TOF Detection Efficiency 459
Energy Measurement System 461
Azimuth Position Measurement System 464
Position by Discrete Anodes 464
Position by the Resistive Anode 464
Resistive Anode Measurements 466
Analog and Digital Electronics 467
Functional Overview 467
Power Supplies (PS) 468
Onboard Classification and Data Handling (Sensor) 468
PHA Word 470
Event Species Classification 470
Matrixs Rates Data 470
Spacecraft Accommodation 471
Instrument Data Products 473
First Light 475
Solar Wind Proton Distributions 475
Solar Wind Minor Species 476
Suprathermal Ion Populations 477
Acknowledgements 479
References 481
S/WAVES: The Radio and Plasma Wave Investigation on the STEREO Mission 486
Abstract 487
Introduction 487
Scientific Objectives 488
Summary of S/WAVES Science Objectivs 488
Remote Sensing of Type II (CME-Associated) and Type III (Flare-Associated) Solar Radio Emissions 489
Observation of In-Situ Type II and III Source Regions 492
Contribution of STEREO to the Theory of Radio Emission in the Interplanetary Medium 493
Low Frequency Receiver (LFR), High Frequency Receiver (HFR) and FFR Receiver Science 494
Time Domain Sampler (TDS) 494
Low Rate Science (LRS) 495
Solar Wind Physics: Electric Field and Density Fluctuations 496
Required Measurements 497
Frequency Domain Measurements 498
Time Series Measurements 498
Direction Finding capabilities of S/WAVES 498
Triangulation and Stereoscopic Measurements 499
Radio Triangulation 499
Stereoscopic Measurements of Radio Emission Properties 499
Thermal Noise Spectroscopy in Solar Filamentary Material 500
Instrument Description 502
Introduction 502
Antennas/Sensors 502
Preamplifiers 502
The Low Frequency Receivers (LFR) 504
The High Frequency Receivers (HFR) 506
Digital Signal Processing Unit 506
The Fixed Frequency Receiver (FFR) 507
The Time Domain Sampler (TDS) 508
Langmuir Waves Statistics (LWS) 512
Low Rate Science (LRS) 513
Low Rate Science Housekeeping 514
Low Rate Science Bursts 514
Data Processing Unit (DPU) 514
Power Supply 515
Resources, Mass, Power and Bits 516
Implementation/Integration 516
Accommodation on Spacecraft 516
Electromagnetic Compatibility 517
Electrostatic Shielding 517
Electrical Bonding 517
Grounding 517
Harnessing 517
Frequency Control 518
Solar Arrays 518
Frequency Controlled Power Supplies: The Picket Fence Approach 518
Inter-Instrument Communication 518
Calibrations 520
Calibrations of the LFR, HFR and FFR 520
Ground Calibrations 520
In Flight Calibrations 521
Inter Calibration between STEREO and Wind 521
Calibration of the TDS 521
Antenna Calibrations 522
Scientific Operations 522
Space Weather forecasting with S/WAVES 522
Archiving 522
Data Archiving at the STEREO Science Center 522
The Archiving at the CDPP Centre 523
Ancillary Radio Data 523
Education and Public Outreach 523
Summary and Conclusions 524
Acknowledgements 525
References 525
The Electric Antennas for the STEREO/WAVES Experiment 528
Abstract 528
Introduction 528
Antenna Science Requirements 530
Sensor Electrical Design 530
Antenna Mechanical Design 533
Stacer Antenna Elements 533
Deployment Assist Device (DAD) 535
Shape Memory Alloy Release (SMAR) 536
Flyweight Brake 537
Mechanism Operation and Safety 538
Verification 539
Base Capacitance Measurements 539
Modeling of the S/WAVES Antennas 540
Simulations and Rheometry Measurements 541
Anechoic Chamber Measurements at High Frequencies 543
In-Flight Antenna Calibration 545
Summary and Early Results 545
Acknowledgements 545
References 546
STEREO/Waves Goniopolarimetry 547
Abstract 547
Introduction 547
Space-Borne Radio Receivers Goniopolarimetry 548
Antenna Calibration 549
Goniopolarimetric Measurement Expressions 549
Spin Demodulation Goniopolarimetry 550
Instantaneous Goniopolarimetry 551
Error Sources and Order of Magnitudes 551
STEREO/Waves Goniopolarimetric Instrumentation 553
Goniopolarimetric Data Samples 554
Adapted Goniopolarimetric Equations 555
Application of Goniopolarimetry to the Study of Solar Type III Radio Bursts 555
Summary and Concluding Remarks 559
Acknowledgements 560
References 561
STEREO Ground Segment, Science Operations, and Data Archive 602
Abstract 602
Introduction 602
Mission Requirements and the Ground System Design 604
Spacecraft and Mission Operations 604
STEREO Spacecraft 604
STEREO Mission Operations 606
Telemetry and Data Processing 607
STEREO Mission Operations Center 609
Local Area Network Architecture 609
STEREO Telemetry Flow 609
STEREO Command Flow 611
MOC Personnel 612
Other Ground Segment Elements 612
Deep Space Mission System 612
Flight Dynamics Facility 613
NOAA 614
STEREO Science Center 614
Local Area Network Architecture 614
SSC Personnel 615
Science Operations Concept 615
Science Planning Cycle 615
Science Working Group Meetings 616
Monthly Teleconferences 616
Weekly Optimization 616
Routine Weekly Schedule 616
Infrastructure for Campaign Coordination 618
Network Exchange of Information and Data 618
Telephone and Fax 618
STEREO Data Archive 618
Planning for Collaborative Observations 618
STEREO Data Products, Archiving, and Access 619
Telemetry 619
Science Processed Data 619
Space Weather Beacon Data 621
Ancillary Data 621
SPICE Ephemeris Products 622
STEREO Data Archive 622
Interaction with Virtual Observatories 622
Uniform Data Format 623
Data Analysis Software 623
Acknowledgements 623
References 623
The Solar Terrestrial Relations Observatory (STEREO) Education and Outreach (E/PO) Program 624
Abstract 624
Introduction 625
Education and Public Outreach at NASA's Science Mission Directorate 625
STEREO Education and Public Outreach Program 627
Formal Education Activities 628
Pre-service Teacher Professional Development Workshops 628
In-Service Teacher Professional Development Workshops 630
Development of Classroom Materials 631
Student-Focused Events 632
Informal Education Activities 633
STEREO in Science Centers and Planetariums 634
Musicians, Artists, and Solar Data 635
Public Outreach 636
Reaching the Public via the Internet 636
Data Availability to the Public 636
STEREO Products for the Public and General Educational Use 639
Conclusions 641
Acknowledgements 643
References 643

Erscheint lt. Verlag 18.7.2008
Zusatzinfo V, 646 p.
Verlagsort New York
Sprache englisch
Themenwelt Naturwissenschaften Physik / Astronomie Astronomie / Astrophysik
Technik Luft- / Raumfahrttechnik
Schlagworte heliospheric physics • observing the sun in 3D • Orbit • solar disturbances • solar influence on climate • solar physics • solar space mission • solar wind • space weather • the sun from space • twin space mission • Weather • Wind
ISBN-10 0-387-09649-3 / 0387096493
ISBN-13 978-0-387-09649-0 / 9780387096490
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 29,5 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Der Wettstreit Dunkler Materie und Dunkler Energie: Ist das Universum …

von Adalbert W. A. Pauldrach; Tadziu Hoffmann

eBook Download (2022)
Springer Berlin Heidelberg (Verlag)
39,99
Von Hubble-, James-Webb- und anderen Großteleskopen bis zu …

von Arnold Hanslmeier

eBook Download (2024)
Springer Berlin Heidelberg (Verlag)
16,99