Analytical Methods for Problems of Molecular Transport - I.N. Ivchenko, S.K. Loyalka, Jr. Tompson  R.V.

Analytical Methods for Problems of Molecular Transport

Buch | Softcover
409 Seiten
2010 | Softcover reprint of hardcover 1st ed. 2007
Springer (Verlag)
978-90-481-7462-1 (ISBN)
53,49 inkl. MwSt
The transport of a given species (atoms, molecules, neutrons, photons, etc. ), either through its own kind or through some other host medium, is a problem of considerable interest. Practical applications may be found in many technologically and environmentally relevant areas such as the transport of neutrons in a nuclear power reactor or in a nuclear weapon, the transport of ions and electrons in plasma, the transport of photons which constitutes radiative heat transfer in various industrial, environmental and space applications, the transport of atoms or molecules of one species either through itself or as one component of a multi-component gas mixture, and the interactions of such gas mixtures with various solid and liquid surfaces such as one might find associated with capillary tubes, aerosol particles, interstellar dust grains, etc. . These application areas are obviously quite broad and it is readily apparent that there are, indeed, few scientific activities that do not require some level of understanding of transport processes. One of the most important and influential texts in the area of transport theory has been The Mathematical Theory of Non-Uniform Gases by Sidney Chapman and T. G. Cowling that was first printed in 1939. This book, along with several other more recent texts (Hirschfelder, J. O. , Curtiss, C. F. and Bird, R. B. , Molecular Theory of Gases and Liquids, John Wiley and Sons, NY, 1954; Kogan, M. N.

From the contents


Table of Tables. Table of Figures. Preface. Acknowledgments. 1. The General Description of a Rarefied Gas. 2. The Boltzmann Equation. 3. The Collision Operator. 4. The Uniform Steady-State of a Gas. 5. The Non-Uniform State for a Simple Gas. 6. Regimes of Rarefied Gas Flows. 7. The Free-Molecular Regime. 8. Methods of Solution of Planar Problems. 9. The Variational Method for the Planar Geometry. 10. The Slip-Flow Regime. 11. Boundary Value Problems for All Knudsen Numbers. 12. Boundary Slip Phenomena in a Binary Gas Mixture. Appendix 1. Bracket Integrals for the Planar Geometry. Appendix 2. Bracket Integrals for Curvilinear Geometries. Appendix 3. Bracket Integrals for Polynomial Expansion Method. Appendix 4. The Variational Principle for Planar Problems. Appendix 5. Some Definite Integrals. Appendix 6. Omega-Integrals for Second-Order Approximation. References. Author Index. Subject Index.

Erscheint lt. Verlag 30.11.2010
Reihe/Serie Fluid Mechanics and Its Applications ; 83
Zusatzinfo XXIV, 409 p.
Verlagsort Dordrecht
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Naturwissenschaften Physik / Astronomie Atom- / Kern- / Molekularphysik
Naturwissenschaften Physik / Astronomie Festkörperphysik
Naturwissenschaften Physik / Astronomie Mechanik
Naturwissenschaften Physik / Astronomie Strömungsmechanik
Naturwissenschaften Physik / Astronomie Thermodynamik
Technik Maschinenbau
ISBN-10 90-481-7462-7 / 9048174627
ISBN-13 978-90-481-7462-1 / 9789048174621
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Jim Sizemore; John Paul Mueller

Buch | Softcover (2024)
Wiley-VCH (Verlag)
28,00
Eine Einführung in die faszinierende Welt des Zufalls

von Norbert Henze

Buch | Softcover (2024)
Springer Spektrum (Verlag)
39,99