Atomic and Ionic Impact Phenomena on Metal Surfaces
Springer-Verlag Berlin and Heidelberg GmbH & Co. K
978-3-540-03410-0 (ISBN)
- Titel ist leider vergriffen;
keine Neuauflage - Artikel merken
This led to extensive investigations of numerous gas/solid phenomena, such as surface ionization, sputtering, emission of secondary electrons and ions from surfaces under atom and/or ion impact, ion neutralization, and the thermal accomodation of gaseous particles on surfaces. As a result, it has become possible to gather a variety of valuable information.
1. The Nature of the Metal Surface.- 1.1. The Heterogeneous Surface.- 1.1.1. Physical Heterogeneity.- 1.1.1.1. Lattice Defects and Interstitial Positions.- 1.1.1.2. Occurrence of Different Crystal Planes on the Surface.- 1.1.2. Chemical Heterogeneity.- 1.1.3. Induced Heterogeneity.- 1.2. Theoretical Description of Metal Surfaces. The Work function.- 2. Determination of the Work Function of Metal Surfaces.- 2.1. Thermal Emission of Electrons.- 2.2. Thermal Emission of Ions.- 2.3. Photoelectric Method.- 2.4. Method Based on the Field Emission of Electrons.- 2.5. Measurements of Contact Potential.- 2.6. Electron Reflection Method.- 3. Preparation of Metal Surfaces.- 3.1. Thermal Desorption; the Flash-Filament Method.- 3.2. Ion Bombardment of the Surface.- 3.3. Evaporation of Thin Layers.- 3.4. Galvanotechnic Procedures.- 4. Binding Forces Effective in the Collision of Atoms and Molecules with Metal Surfaces.- 4.1. vanderWaals Forces-Physical Adsorption.- 4.1.1. Homogeneous Surfaces.- 4.1.2. Heterogeneous Surfaces.- 4.2. Exchange Forces-Weak Chemisorption on Homogeneous and Heterogeneous Surfaces.- 4.3. Heteropolar Binding Forces-Strong Chemisorption.- 4.3.1. Atoms on Homogeneous Surfaces.- 4.3.2. Polar Molecules on Homogeneous Surfaces.- 4.3.3. Heterogeneous Surfaces.- 5. Energetics of Surface Reactions.- 5.1. General Remarks and Definitions.- 5.2. Heats of Adsorption for Physical Adsorption.- 5.3. Heats of Adsorption for Weak Chemisorption.- 5.4. Heats of Adsorption for Strong Chemisorption.- 6. Inelastic Collisions of Atoms and Molecules with Metal Surfaces: The Accommodation Coefficient.- 6.1. Definition and General Remarks.- 6.2. Methods for Measuring Accommodation Coefficients.- 6.2.1. Measurements in the Low-Pressure Range.- 6.2.1.1. Molecular-Beam Method.- 6.2.1.2. Heat-Conductivity Method.- 6.2.1.3. Recoil Methods.- 6.2.2. Measurements at High Pressures: the Temperature Jump.- 6.3. Experimental Results on Accommodation Coefficients.- 6.3.1. Monatomic Gases.- 6.3.1.1. Experimental Data.- 6.3.1.2. Theoretical Considerations.- 6.3.2. Diatomic Gases.- 6.3.2.1. Experimental Data.- 6.3.2.2. Theoretical Considerations.- 6.3.3. Polyatomic Gases.- 6.3.3.1. Experimental Data.- 6.3.3.2. Theoretical Considerations.- 6.4. Determination of Relaxation Times for the Process of Energy Exchange between the Normal Vibrational States of the System Comprising Adsorbed Molecule and Metal Surface.- 7. Elastic Collisions of Atoms and Molecules with Metal Surfaces.- 8. Emission of Positive Ions Formed at Metal Surfaces (Surface Ionization).- 8.1. Theoretical Considerations.- 8.1.1. Equation for Emission from a Homogeneous Surface in the Absence of External Electrical Fields.- 8.1.2. Equation for Emission from a Homogeneous Surface in an External Electrical Field.- 8.1.3. Equation for Emission from Heterogeneous Surfaces in the Absence of External Electrical Fields.- 8.1.4. Equation for Emission from Heterogeneous Surfaces in an External Electrical Field.- 8.2. Relation of the Saha-Langmuir Equation to the Frenkel Equation and to Charge-Transfer Probabilities.- 8.3. Experimental Investigation of Positive Surface Ionization (PSI).- 8.3.1. Experimental Methods.- 8.3.1.1. "Bulb" Method without Mass Spectrometric Analysis.- 8.3.1.2. Single Filament Ion Source with Mass Spectrometer: Plain Emitter-Porous Emitter.- 8.3.1.3. Multiple-Filament Source with Mass Spectrometer.- 8.3.1.4. Beam Methods.- 8.3.1.5. Pulsed-Beam Methods.- 8.3.2. Experimental Results.- 8.3.2.1. Positive Surface Ionization for Alkali Metal Atoms in Weak Electric Fields.- 8.3.2.2. Positive Surface Ionization of Some Alkali-Salt Molecules on Metal Surfaces in Weak External Fields.- 8.3.2.3. Positive Surface Ionization of Alkaline Earth Elements and Compounds in Weak External Fields.- 8.3.2.4. Positive Surface Ionization of Other Elements and Compounds in Weak External Fields.- 8.3.2.5. Positive Surface Ionization in Strong External Electric Fields-Field Desorption.- 9. Formation and Emission of Negative Ions at Metal Surfaces (NSI).- 9.1. Theoretical Considerations.- 9.1.1. Emission Equation for a Homogeneous Surface.- 9.1.2. Emission Equation for Heterogeneous Surfaces.- 9.2. Experimental Methods.- 9.3. Experimental Results.- 10. Sputtering of Metal Surfaces by Ion Bombardment.- 10.1. Introduction.- 10.2. Experimental Methods.- 10.2.1. Methods for Producing the Incident Ion.- 10.2.1.1. Glow Discharge.- 10.2.1.2. Low-Pressure Gas Discharge in a Magnetic Field.- 10.2.1.3. Supplemented Low-Pressure Arc.- 10.2.1.4. Ion Beams (Not Mass Analyzed).- 10.2.1.5. Mass-Analyzed Ion Beams.- 10.2.2. Methods of Determining the Sputtering Yield.- 10.2.2.1. Weight Change of Target and/or Collector.- 10.2.2.2. Optical Transmission through Sputtered Layers.- 10.2.2.3. Radioactive-Tracer Method.- 10.2.2.4. Surface-Ionization.- 10.2.2.5. Mass-Spectrometric Detection.- 10.2.2.6. Optical Spectroscopy.- 10.3. Experimental Results.- 10.3.1. Sputtering of Neutral Target Atoms from Polycrystalline Targets.- 10.3.1.1. Threshold Values for Sputtering.- 10.3.1.2. Sputtering Yields in the Hard-Sphere Collision Region.- 10.3.1.2.1. Dependence on the Energy of the Incident Ion.- a) Energy Range 0.1-1.0 keV.- b) Energy Range 1-60 keV.- 10.3.1.2.2. Dependence on Angle of Incidence.- 10.3.1.2.3. Dependence on Target Temperature.- 10.3.1.2.4. Self-Sputtering.- 10.3.1.2.5. Dependence on the Incident-Ion Current Density.- 10.3.1.2.6. Dependence on Residual Gas Pressure.- 10.3.1.2.7. Angular Distribution of Sputtered Particles.- 10.3.1.2.8. Mean Velocity of Sputtered Particles.- 10.3.1.3. Sputtering Yields in the Weak-Screening Region.- 10.3.1.3.1. Dependence on the Incident-Ion Energy.- 10.3.1.3.2. Angular Distribution of Sputtered Particles.- 10.3.1.4. Sputtering Yields in the Rutherford-Collision Region.- 10.3.2. Sputtering of Neutral Target Atoms from Monocrystalline Targets.- 10.3.2.1. Atom Ejection Pattern for Face-Centered Cubic Metals.- 10.3.2.1.1. The (100) Surface.- 10.3.2.1.2. The (110) Surface.- 10.3.2.1.3. The (111) Surface.- 10.3.2.2. Atom Ejection for Body-Centered Cubic Metals.- 10.3.2.2.1. The (100) Surface.- 10.3.2.2.2. The (110) Surface.- 10.3.2.2.3. The (111) Surface.- 10.3.3. Sputtering of Target Particles in an Excited Neutral or Ionized State from Polycrystalline and Monocrystalline Targets.- 10.3.3.1. Treshold Values for the Sputtering of Charged Particles.- 10.3.3.2. Species of Sputtered Positive and Negative Ions.- 10.3.3.3. Dependence on the Energy of the Primary Ion.- 10.3.3.4. The Effect of Target Temperature.- 10.3.3.5. Energy Distribution of Sputtered Ions.- 10.3.4. Etching of Surfaces by Sputtering.- 10.3.4.1. Etching of Polycrystalline Metal Surfaces.- 10.3.4.2. Etching of Single-Crystal Surfaces.- 10.3.5. Structural Changes in Pure Metals or Alloys as a Result of Ion Bombardement.- 10.4. Theoretical Treatments of the Sputtering Process.- 10.4.1. "Hot-Spot" Model-"Heated Spike" Model.- 10.4.2. Collision Models.- 10.4.2.1. Collision Theories for the Energy Range E < EA (Hard-Sphere-Region).- 10.4.2.2. Collision Theories for the Energy Range EA Collision Theories for the Energy Range E >EB (Rutherford-Collision Region).- 11. Ion Scattering from Metal Surfaces.- 11.1 Definitions: Ion-Reflection Coefficient and Secondary-Emission Coefficient.- 11.2 Experimental Techniques.- 11.3. Experimental Ion-Reflection and Secondary-Emission Coefficients.- 11.3.1. Dependence on the Incident Ion Energy.- 11.3.1.1. Incident Noble-Gas Ions.- 11.3.1.2. Incident Alkali Ions.- 11.3.1.3. Incident Protons, Deuterons, and Various Other Atomic and Molecular Ions.- 11.3.2. Dependence on the Mass and Electronic Configuration of the Incident Ion.- 11.3.3. Dependence on the Mass and Work Function of the Target Material.- 11.3.4. Dependence on the Angle of Incidence.- 11.3.5. Energy Distribution of Reflected and Secondary Ions.- 11.3.6. Dependence on the Target Temperature and on Surface Contamination.- 11.4. Theoretical Treatment of Ion Scattering from Metal Surfaces.- 12. Neutralization of Ions on Metal Surfaces (Potential Emission of Secondary Electrons).- 12.1. Introductory Remarks and Definitions.- 12.2. Auger Neutralization; Resonance Neutralization.- 12.2.1. Experimental Methods.- 12.2.2. Experimental Results.- 12.2.2.1. Singly-Charged Ions.- 12.2.2.1.1. Secondary-Electron Yield ? and its De pendence on the Energy E of the Incident Ion.- 12.2.2.1.2. Energy Distribution of Secondary Elec trons and its Dependence on the Incident-Ion Energy.- 12.2.2.1.3. Influence of Surface Contamination on the Yield and Energy Distribution of the Secondary Electrons.- 12.2.2.2. Multiply-Charged Ions.- 12.2.2.2.1. Secondary Electron Yield ? and its Dependence on the Energy E of the Incident Ion.- 12.2.2.2.2. Energy Distribution of Secondary Elec trons.- 12.2.2.2.3. Influence of Surface Contamination on the Electron Yield and the Electron Distribution.- 12.2.3. Theory of Auger Neutralization.- 12.2.3.1. General Definitions of the Total Transition Rate and Related Probability Functions.- 12.2.3.2. Total Transition Rate and the Probability for Auger Neutralization.- 12.2.3.3. The Probability of Emission of an Excited Electron from the Metal Surface.- 12.2.3.4. Effects which Broaden the Electron Energy Distri bution.- 12.2.3.5. Comparison of Experimental and Theoretical Values for the Energy Distribution and Yield of Secondary Electrons.- 13. De-excitation of Metastable Atoms and Ions on Metal Surfaces.- 13.1. Introductory Remarks and Description of Experimental Methods.- 13.2. Experimental Data for the Total Yield and Energy Distribution of Secondary Electrons from De-excitation of Metastable Atoms and Ions on Metal Surfaces.- 13.3. Theoretical Aspects of the Auger De-excitation of Metastable Atoms on Metal Surfaces.- 14. The Emission of Electrons from Metal Surfaces by Bombardment with Charged and Uncharged Particles (Kinetic Emission).- 14.1. Introduction.- 14.2. Experimental Methods.- 14.3. Experimental Results.- 14.3.1. Dependence of Secondary-Electron Yield ? on the Energy or Velocity of an Incident Ion or Neutral Atom.- 14.3.1.1. Medium Energy Range.- 14.3.1.1.1. Atoms and Ions of Noble Gases.- 14.3.1.1.2. Alkali or Alkaline Earth Metal Ions.- 14.3.1.1.3. Ions of Various Kinds.- 14.3.1.2. High-Energy Range.- 14.3.1.2.1. Noble-Gas Ions.- 14.3.1.2.2. Alkali and Alkaline Earth Metal Ions.- 14.3.1.2.3. Various Kinds of Ions.- 14.3.2. Effects of Surface Coverage on the Secondary Electron Yield ?.- 14.3.3. Dependence of the Electron Yield ? on the Mass of the Incident Ion (Isotope Effect).- 14.3.4. Dependence of the Electron Yield ? on the Charge State of the Incident Particle.- 14.3.5. Temperature Dependence of the Secondary Electron Yield ?.- 14.3.6. Variation of ? with the Angle of Incidence ?.- 14.3.7. Energy Distribution of Secondary Electrons.- 14.4. Theoretical Aspects of the Kinetic Emission of Secondary Electrons.- Literature.- Author Index.
Reihe/Serie | Struktur und Eigenschaften der Materie in Einzeldarstellungen ; 25 |
---|---|
Verlagsort | Berlin |
Sprache | englisch |
Gewicht | 765 g |
Themenwelt | Naturwissenschaften ► Chemie ► Analytische Chemie |
Naturwissenschaften ► Physik / Astronomie ► Festkörperphysik | |
ISBN-10 | 3-540-03410-2 / 3540034102 |
ISBN-13 | 978-3-540-03410-0 / 9783540034100 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich