The Bioinorganic Chemistry of Nickel -

The Bioinorganic Chemistry of Nickel

Jack R. Lancaster (Herausgeber)

Buch | Hardcover
337 Seiten
1988
John Wiley & Sons Inc (Verlag)
978-0-471-18692-2 (ISBN)
256,80 inkl. MwSt
  • Titel ist leider vergriffen;
    keine Neuauflage
  • Artikel merken
Fourteen articles by leading researchers constitute the first book exclusively devoted to the biological utilization of nickel. The articles range from the chemistry and physics of nickel complexes in general to the roles of this metal in cellular catalytic phenomena. The book's purpose is to provide extensive background for non- specialists, as well as insight into the possible future research directions. The contributions are broad-based and in some cases speculative, rather than merely compendia of recent data.

Chapter 1; The Coordination Chemistry of Nickel: An Introductory Survey; C. L. Coyle and E. I. Stiefel; 1.1. Introduction; 1.2. The Element; 1.3 Nickel(II) Complexes; 1.4. Structure and Bonding; 1.5. Ligand Effects; 1.6. Four--Coordinate Complexes; 1.7. Six--Coordinate Complexes; 1.8. Polynuclear Species; 1.9. Less Common Oxidation States; 1.9.1. Nickel(0); 1.9.2. Nickel(I); 1.9.3. Nickel(III) and Nickel(IV); 1.10. Non--Innocent Ligands; 1.11. Dithiolene Complexes; 1.12. Dynamic Properties; 1.13. Conclusions; References; Chapter 2; Nickel(III) Chemistry and Properties of the Peptide Complexes of Ni(II) and Ni(III); Dale W. Margerum and Sally L. Anliker; 2.1. Introduction; 2.2. Monopeptide Complexes of Nickel (III); 2.3. Bis(dipeptido) Complexes of Nickel(II) and Nickel(III); 2.4. Bis(tripeptido) Complexes of Nickel(III); 2.5. Nickel(III) Mixed--Ligand Complexes; 2.6. Electron Transfer and Redox Reactions; References; Chapter 3; The EPR Spectra of Odd--Electron Nickel Ions in Biological Systems: Theory for d 7 and d 9 Ions; J. C. Salerno; 3.1. EPR Spectra of Biological Nickel; 3.2. EPR of Nickel in Odd--Electron States; 3.2.1. EPR of d 7 Complexes; 3.2.2. EPR of d 9 Complexes; 3.3. Crystal Field Theory and the EPR Spectra of d 7 and d 9 Ions.; 3.4. Crystal Field Theory and Low--Symmetry Complexes; 3.5. Tetrahedral Complexes; 3.6. Conclusions; References; Chapter 4; Electronic and Molecular Structure of Biological Nickel as Studied by X--ray Absorption Spectroscopy; Marly K. Eidsness, Richard J. Sullivan, and Robert A. Scott; 4.1. Introduction; 4.1.1. X--ray Absorption Edge Spectroscopy; 4.1.2. What To Expect from Nickel; 4.1.3. Biological Nickel Before X--ray Absorption Spectroscopy; 4.2. Nickel Model Compounds; 4.2.1. Oxidation State; 4.2.2. Ligand Type; 4.2.3. Coordination Geometry; 4.3. Nickel Enzymes; 4.3.1. (Ni, Fe) Hydrogenases; 4.3.2. CO Dehydrogenase; 4.3.3. Factor F 430 of S--Methyl--Coenzyme--M Reductase; References; Chapter 5; Nickel in Biology: Nickel as an Essential Trace Element; Dorothe Ankel--Fuchs and Rudolf K. Thauer; 5.1. Introduction; 5.2. Role of Nickel in Bacteria; 5.2.1. Bacteria with Nickel Hydrogenase(s); 5.2.2. Anaerobic Bacteria with Carbon Monoxide Dehydrogenase; 5.2.3. Bacteria with Methyl--CoM Reductase; 5.2.4. Bacteria with Urease; 5.2.5. Growth Dependence of an Oscillatoria sp. on Nickel; 5.3. Role of Nickel in Plants; 5.3.1. Urease--Containing Plants and Fungi; 5.3.2. Nickel Dependence of Plants Not Containing Urease; 5.3.3. Nickel--Accumulating Plants; 5.4. Role of Nickel in Animals; References; Chapter 6; Biological Transport of Nickel; Harold L Drake; 6.1. Introduction; 6.2. Vertebrate Nickel Transport; 6.2.1. Role of Bound Nickel in Systemic Transport; 6.2.2. Cellular Nickel Transport; 6.2.3. Nickel Uptake by Phagocytosis; 6.2.4. Systemic Absorption and Excretion of Nickel; 6.2.5. Summary on Vertebrate Nickel Transport; 6.3. Nickel Transport in Plants; 6.3.1. Transport and Chelators in Nickel Hyperaccumulators; 6.3.2. Nickel in Nonhyperaccumulators; 6.3.3. Summary on Nickel Transport in Plants; 6.4. Microbial Nickel Transport; 6.4.1. Bacterial Transport of Nickel; 6.4.2. Fungal Transport of Nickel; 6.4.3. Other Microbial Studies; 6.4.4. Summary on Microbial Nickel Transport; 6.5. Nickel Transport by Other Biological Systems; 6.6. Conclusions; References; Chapter 7; Urease - A Ni(II) Metalloenzyme; Robert K. Andrews, Robert L. Blakeley, and Burt Zerner; 7.1. Historical Perspective; 7.1.1. Urea; 7.1.2. Urease; 7.2. The Synthesis and Degradation of Urea; 7.2.1. Nonenzymatic Synthesis of Urea; 7.2.2. The Nonenzymatic Degradation of Urea; 7.2.3. Enzyme--Catalyzed Degradation of Urea; 7.3. The Nickel Content of Urease and Jackbeans; 7.3.1. The Nickel Content of Urease; 7.3.2. The Nickel Content of Jackbeans; 7.3.3. Why Nickel?; 7.4. Hydroxamic Acids and the Equivalent Weight of Urease; 7.4.1. The Equivalent Weight of Urease; 7.4.2. Complexes of Hydroxamic Acids with Metal Ions; 7.5. The Molecular Properties of Urease; 7.5.1. Amino Acid Composition; 7.5.2. Physicochemical Properties; 7.5.3. The Thiols of Urease; 7.6. Absorption Spectra; 7.7. On the Mechanism of Action of Urease; 7.7.1. Specificity; 7.7.2. The Role of the Metal Ion; 7.7.3. Differential Alteration of Charge; 7.7.4. A Possible Mechanism of Action; 7.7.5. Ni(II)--Promoted Hydrolysis of Amides; 7.8. Conclusion; References; Chapter 8; Nickel in Hydrogenases from Sulfate--Reducing, Photosynthetic, and Hydrogen--Oxidizing Bacteria; Richard Cammack, Victor M. Fernandez, and Klaus Schneider; 8.1. Introduction; 8.1.1. Evidence for the Involvement of Nickel in Hydrogenase; 8.1.2. Genetics of Hydrogenases; 8.2. Structure of Hydrogenases; 8.2.1. A General Model; 8.2.2. Subunit Composition and Prosthetic Groups; 8.3. Hydrogenase Activity; 8.3.1. Comparisons of Activity; 8.3.2. "Uptake" and "Production" Hydrogenases; 8.3.3. Stability; 8.3.4. Activation--Deactivation Phenomena; 8.4. Electron Paramagnetic Resonance Spectra; 8.4.1. Oxidized Hydrogenase; 8.4.2. Reduced Hydrogenase; 8.4.3. Coordination of the Nickel Site; 8.4.4. Interactions between Nickel and Iron--Sulfur Clusters; 8.4.5. Absent EPR Signals; 8.5. Redox Properties of Hydrogenases; 8.5.1. Activity; 8.5.2. Redox Centers; 8.6. The Role of Nickel in Hydrogenase Catalysis; 8.6.1. Evidence for Involvement in the H Site; 8.6.2. Possible Mechanisms of Hydrogenase Catalysis Involving Nickel; 8.7. Concluding Remarks: Toward a Classification of the Nickel--Containing Hydrogenases; 8.7.1. Composition; 8.7.2. Differences between Nickel Sites in Different Enzymes; References; Chapter 9; (Ni, Fe)Hydrogenases from Sulfate--Reducing Bacteria: Nickel Catalytic and Regulatory Roles; Jose J. G. Moura, Miguel Teixeira, Isabel Moura, and Jean LeGall; 9.1. Introductory Remarks; 9.2. Native (Ni, Fe)Hydrogenases; 9.2.1. Nickel EPR Signals; 9.2.2. Unambiguous Assignment of the Nickel EPR Signals by Isotopic Labeling Experiments Using 61 Ni; 9.2.3. Iron--Sulfur Centers; 9.3. Intermediate States Generated under H 2 Atmosphere; 9.4. Nickel Chemistry in the Context of Its Biological Role; 9.4.1. Oxidation States Involved; 9.4.2. Coordination and Redox Transitions; 9.4.3. EPR Information Concerning Ni(III) and Ni(I) Oxidation States; 9.4.4. Nickel(I) and Nickel(III) Model Compounds; 9.4.5. Functional Model Systems; 9.5. Mechanism of Hydrogenase Action--Activation and Catalytic Cycles; 9.5.1. The Activation Cycle; 9.5.2. The Catalytic Cycle; References; Chapter 10; Hydrogenases of Methanobacterium thermoautotrophicum strain DELTAH; Neil R. Bastian, David A. Wink, Lawrence P. Wackett, David J. Livingston, Lynda M. Jordan, Judith Fox, William H. Orme--Johnson, and Christopher T. Walsh; 10.1. Introduction; 10.2. Methanogen Hydrogenases; 10.2.1. Purification and Properties; 10.2.2. Electron Microscopy; 10.2.3. Kinetics of F 420 --Reducing Hydrogenase; 10.2.4. Electron Paramagnetic Resonance Spectroscopy; 10.2.5. Electron Spin--Echo Spectroscopy; 10.2.6. EXAFS Spectroscopy; 10.2.7. Magnetic Circular Dichroism Spectroscopy; 10.2.8. Redox Potential; 10.3. Summary; References; Chapter 11; Methyl--S--Coenzyme--M Reductase: A Nickel--Dependent Enzyme Catalyzing the Terminal Redox Step in Methane Biogenesis; Lawrence P. Wackett, John F. Honek, Tadhg P. Begley, Spencer L. Shames, Eric C. Niederhoffer, Robert P. Hausinger, William H. Orme--Johnson, and Christopher T. Walsh; 11.1. Introduction; 11.2. In Vitro Methanogenesis; 11.2.1. Preparation and Properties of Cell--Free Extracts Containing Methyl Reductase Activity; 11.2.2. Fractionation of Cell Extract Compounds Active in Methyl--Coenzyme M Reduction; 11.3. F 430 ; 11.4. Electron Microscopy; 11.5. Mechanistic Studies of Methyl Reductase; 11.5.1. Alternative Substrates and Inhibitors; 11.6. Conclusions; References; Chapter 12; Structure and Properties of Coenzyme F 430 ; Andreas Pfaltz; 12.1. Introduction; 12.2. Structure of Coenzyme F 430 ; 12.2.1. Structure of the Porphinoid Ligand System; 12.2.2. Structure of the Protein--Free Cofactor; 12.3. Reactivity at the Ligand Periphery; 12.3.1. Epimerization to 12, 13--Diepi--F 430 ; 12.3.2. 12, 13--Didehydro--F 430 : Formation and Selective Reduction Back to F 430 ; 12.4. Reactivity at the Nickel Center; References; Chapter 13; Carbon Monoxide Dehydrogenase of Acetogens; Gabriele Diekert; 13.1. Introduction; 13.2. Properties of CO Dehydrogenase; 13.2.1. Kinetic Properties; 13.2.2. Molecular Properties; 13.2.3. Physiological Electron Acceptor; 13.3. Physiological Role of CO Dehydrogenase; 13.3.1. Oxidation of CO to CO 2 ; 13.3.2. Reduction of CO 2 to CO and Incorporation of CO into Acetate; 13.3.3. Physiological Role in Other Anaerobes; References; Chapter 14; Nickel in CO Dehydrogenase; Steve W. Ragsdale, Herland G. Wood, Tom A Morton, Lars G. Ljungdahl, and Dan V. DerVartanian; 14.1. Introduction; 14.2. CO Dehydrogenase: Physiological Role; 14.2.1. Acetyl--CoA Synthesis; 14.2.2. CO Dehydrogenase in CO Uptake in the Environment; 14.3. Nickel and CO Chemistry Relating to CO Dehydrogenase Reactions; 14.3.1. CO Chemistry; 14.3.2. Metal Carbonyl Chemistry; 14.3.3. Nickel Chemistry; 14.3.4. Nickel in Enzymes Other than CO Dehydrogenase; 14.4. Properties of Nickel in CO Dehydrogenase; 14.4.1. Nickel Content; 14.4.2. Geometry of the Nickel Site; 14.5. Why is Nickel in CO Dehydrogenase?; References; Index

Erscheint lt. Verlag 4.10.1988
Verlagsort New York
Sprache englisch
Maße 163 x 244 mm
Gewicht 700 g
Einbandart gebunden
Themenwelt Naturwissenschaften Chemie Anorganische Chemie
ISBN-10 0-471-18692-9 / 0471186929
ISBN-13 978-0-471-18692-2 / 9780471186922
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Erwin Riedel; Christoph Janiak

Buch | Hardcover (2022)
De Gruyter (Verlag)
92,95
Basic Concepts and Exercises

von Eckhard Worch

Buch | Softcover (2023)
De Gruyter (Verlag)
74,95