Bayesian Disease Mapping
CRC Press (Verlag)
978-1-138-57542-4 (ISBN)
Since the publication of the second edition, many new Bayesian tools and methods have been developed for space-time data analysis, the predictive modeling of health outcomes, and other spatial biostatistical areas. Exploring these new developments, Bayesian Disease Mapping: Hierarchical Modeling in Spatial Epidemiology, Third Edition provides an up-to-date, cohesive account of the full range of Bayesian disease mapping methods and applications.
In addition to the new material, the book also covers more conventional areas such as relative risk estimation, clustering, spatial survival analysis, and longitudinal analysis. After an introduction to Bayesian inference, computation, and model assessment, the text focuses on important themes, including disease map reconstruction, cluster detection, regression and ecological analysis, putative hazard modeling, analysis of multiple scales and multiple diseases, spatial survival and longitudinal studies, spatiotemporal methods, and map surveillance. It shows how Bayesian disease mapping can yield significant insights into georeferenced health data.
The target audience for this text is public health specialists, epidemiologists, and biostatisticians who need to work with geo-referenced health data.
Andrew B. Lawson is a professor of biostatistics and eminent scholar in the Division of Biostatistics and Epidemiology in the College of Medicine at the Medical University of South Carolina. He is an ASA fellow and an advisor in disease mapping and risk assessment for the World Health Organization. Dr. Lawson has published over 100 journal papers and eight books and is the founding editor of Spatial and Spatio-temporal Epidemiology. He received a PhD in spatial statistics from the University of St. Andrews. His research interests include the analysis of clustered disease maps, spatial and spatio-temporal disease surveillance, nutritional measurement error, and Bayesian latent variable and SEM modeling.
Introduction. Bayesian Inference and Modeling. Computational Issues. Residuals and Goodness-of-Fit. Disease Map Reconstruction and Relative Risk Estimation. Disease Cluster Detection. Regression and Ecological Analysis. Putative Hazard Modeling. Multiple Scale Analysis. Multivariate Disease Analysis. Spatial Survival and Longitudinal Analyses. Spatiotemporal Disease Mapping. Disease Map Surveillance. Infectious Disease Modeling. Computational Software Issues. Basic R and Win/OpenBUGS. Selected WinBUGS Code. R Code for Thematic Mapping. Appendices.
Erscheinungsdatum | 13.06.2018 |
---|---|
Reihe/Serie | Chapman & Hall/CRC Interdisciplinary Statistics |
Zusatzinfo | 22 Tables, black and white; 156 Line drawings, black and white; 156 Illustrations, black and white |
Verlagsort | London |
Sprache | englisch |
Maße | 156 x 234 mm |
Gewicht | 716 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik |
Studium ► Querschnittsbereiche ► Epidemiologie / Med. Biometrie | |
ISBN-10 | 1-138-57542-9 / 1138575429 |
ISBN-13 | 978-1-138-57542-4 / 9781138575424 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich