Temporal Network Epidemiology -

Temporal Network Epidemiology (eBook)

Naoki Masuda, Petter Holme (Herausgeber)

eBook Download: PDF
2017 | 1st ed. 2017
VI, 342 Seiten
Springer Singapore (Verlag)
978-981-10-5287-3 (ISBN)
Systemvoraussetzungen
139,09 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book covers recent developments in epidemic process models and related data on temporally varying networks. It is widely recognized that contact networks are indispensable for describing, understanding, and intervening to stop the spread of infectious diseases in human and animal populations; 'network epidemiology' is an umbrella term to describe this research field.

More recently, contact networks have been recognized as being highly dynamic. This observation, also supported by an increasing amount of new data, has led to research on temporal networks, a rapidly growing area. Changes in network structure are often informed by epidemic (or other) dynamics, in which case they are referred to as adaptive networks.

This volume gathers contributions by prominent authors working in temporal and adaptive network epidemiology, a field essential to understanding infectious diseases in real society.



Naoki Masuda has been a Senior Lecturer at the University of Bristol's Department of Engineering Mathematics since 2014. His research interests include both theoretical and data-science aspects of network science, computational neuroscience including neuroinformatics, behavioural ecology, and mathematical biology in general. He received his PhD from the University of Tokyo in 1998. After postdocs in Japan, he worked as a Lecturer and Associate Professor at the University of Tokyo between 2006 and 2014, prior to joining the University of Bristol.

Petter Holme is a specially appointed professor at the Institute of Innovative Research, Tokyo Institute of Technology, Japan. His research is both data driven and theoretical and covers many aspects of large-scale structures of natural and social systems. Lately he has also become interested in how to integrate information about time with network methods. Holme has a PhD in theoretical physics from Umeå University, Sweden. After postdocs at the Department of Physics, University of Michigan, and Department of Computer Science, University of New Mexico, he served as an Assistant Professor at the School for Computer Science and Communication, Royal Institute of Technology, Sweden; the Department of Physics, Umeå University, Sweden; and Sungkyunkwan University, Korea before joining Tokyo Institute of Technology. 


This book covers recent developments in epidemic process models and related data on temporally varying networks. It is widely recognized that contact networks are indispensable for describing, understanding, and intervening to stop the spread of infectious diseases in human and animal populations; "e;network epidemiology"e; is an umbrella term to describe this research field.More recently, contact networks have been recognized as being highly dynamic. This observation, also supported by an increasing amount of new data, has led to research on temporal networks, a rapidly growing area. Changes in network structure are often informed by epidemic (or other) dynamics, in which case they are referred to as adaptive networks.This volume gathers contributions by prominent authors working in temporal and adaptive network epidemiology, a field essential to understanding infectious diseases in real society.

Naoki Masuda has been a Senior Lecturer at the University of Bristol’s Department of Engineering Mathematics since 2014. His research interests include both theoretical and data-science aspects of network science, computational neuroscience including neuroinformatics, behavioural ecology, and mathematical biology in general. He received his PhD from the University of Tokyo in 1998. After postdocs in Japan, he worked as a Lecturer and Associate Professor at the University of Tokyo between 2006 and 2014, prior to joining the University of Bristol. Petter Holme is a specially appointed professor at the Institute of Innovative Research, Tokyo Institute of Technology, Japan. His research is both data driven and theoretical and covers many aspects of large-scale structures of natural and social systems. Lately he has also become interested in how to integrate information about time with network methods. Holme has a PhD in theoretical physics from Umeå University, Sweden. After postdocs at the Department of Physics, University of Michigan, and Department of Computer Science, University of New Mexico, he served as an Assistant Professor at the School for Computer Science and Communication, Royal Institute of Technology, Sweden; the Department of Physics, Umeå University, Sweden; and Sungkyunkwan University, Korea before joining Tokyo Institute of Technology. 

Introduction.- Temporal subgraph percolation.- Disease spreading in time-evolving networked communities.- Epidemic threshold in temporally switching networks.- Sources of unpredictability in disease spreading on temporal networks.- Epidemics based centrality measure for temporal networks: US hospital network study case.- Epidemics on dynamic networks: non-reactive and reactive link rewiring.- Time-varying activity driven networks to model epidemic spreading: the case of the 2014/15 Ebola outbreak.- Control Strategies of Contagion Processes in Time-varying Networks.ms.- behavioural="" traits="" supporting="" dynamic="" interaction="" with="" multiple="" modes="" spreading.- analysis="" control="" outbreaks="" adaptive="" networks.  

Erscheint lt. Verlag 4.10.2017
Reihe/Serie Theoretical Biology
Theoretical Biology
Zusatzinfo VI, 342 p. 121 illus., 83 illus. in color.
Verlagsort Singapore
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Angewandte Mathematik
Medizin / Pharmazie Medizinische Fachgebiete Mikrobiologie / Infektologie / Reisemedizin
Studium Querschnittsbereiche Epidemiologie / Med. Biometrie
Naturwissenschaften Biologie
Schlagworte adaptive networks • Big Data • Compartmental models • Epidemic processes • infectious disease • Network epidemiology • outbreak • Temporal networks
ISBN-10 981-10-5287-5 / 9811052875
ISBN-13 978-981-10-5287-3 / 9789811052873
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich