Predictive Modeling of Drug Sensitivity - Ranadip Pal

Predictive Modeling of Drug Sensitivity

(Autor)

Buch | Softcover
354 Seiten
2016
Academic Press Inc (Verlag)
978-0-12-805274-7 (ISBN)
94,75 inkl. MwSt
Predictive Modeling of Drug Sensitivity gives an overview of drug sensitivity modeling for personalized medicine that includes data characterizations, modeling techniques, applications, and research challenges. It covers the major mathematical techniques used for modeling drug sensitivity, and includes the requisite biological knowledge to guide a user to apply the mathematical tools in different biological scenarios.

This book is an ideal reference for computer scientists, engineers, computational biologists, and mathematicians who want to understand and apply multiple approaches and methods to drug sensitivity modeling. The reader will learn a broad range of mathematical and computational techniques applied to the modeling of drug sensitivity, biological concepts, and measurement techniques crucial to drug sensitivity modeling, how to design a combination of drugs under different constraints, and the applications of drug sensitivity prediction methodologies.

Ranadip Pal is an associate professor in the Electrical and Computer Engineering Department, at the Texas Tech University, USA. His research areas are stochastic modeling and control, genomic signal processing, and computational biology. He is the author of more than 60 peer-reviewed articles including publications in high impact journals such as Nature Medicine and Cancer Cell. He has contributed extensively to robustness analysis of genetic regulatory networks and predictive modeling of drug sensitivity. His research group was a top performer in NCI supported drug sensitivity prediction challenge.

1: Introduction2: Data characterization3: Feature selection and extraction from heterogeneous genomic characterizations4: Validation methodologies5: Tumor growth models6: Overview of predictive modeling based on genomic characterizations7: Predictive modeling based on random forests8: Predictive modeling based on multivariate random forests9: Predictive modeling based on functional and genomic characterizations10: Inference of dynamic biological networks based on perturbation data11: Combination therapeutics12: Online resources13: Challenges

Erscheinungsdatum
Verlagsort San Diego
Sprache englisch
Maße 191 x 235 mm
Gewicht 630 g
Themenwelt Informatik Grafik / Design Digitale Bildverarbeitung
Mathematik / Informatik Informatik Theorie / Studium
Medizin / Pharmazie Medizinische Fachgebiete Pharmakologie / Pharmakotherapie
Technik
ISBN-10 0-12-805274-0 / 0128052740
ISBN-13 978-0-12-805274-7 / 9780128052747
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Modelle für 3D-Druck und CNC entwerfen

von Lydia Sloan Cline

Buch | Softcover (2022)
dpunkt (Verlag)
34,90
Einstieg und Praxis

von Werner Sommer; Andreas Schlenker

Buch | Softcover (2023)
Markt + Technik (Verlag)
19,95
alles zum Drucken, Scannen, Modellieren

von Werner Sommer; Andreas Schlenker

Buch | Softcover (2024)
Markt + Technik Verlag
24,95