Data and Information Quality (eBook)

Dimensions, Principles and Techniques
eBook Download: PDF
2016 | 1st ed. 2016
XXVIII, 500 Seiten
Springer International Publishing (Verlag)
978-3-319-24106-7 (ISBN)

Lese- und Medienproben

Data and Information Quality - Carlo Batini, Monica Scannapieco
Systemvoraussetzungen
128,39 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book provides a systematic and comparative description of the vast number of research issues related to the quality of data and information. It does so by delivering a sound, integrated and comprehensive  overview of the state of the art and future development of data and information quality in databases and information systems.

To this end, it presents an extensive description of the techniques that constitute the core of data and information quality research, including record linkage (also called object identification), data integration, error localization and correction, and examines the related techniques in a comprehensive and original methodological framework. Quality dimension definitions and adopted models are also analyzed in detail, and differences between the proposed solutions are highlighted and discussed. Furthermore, while systematically describing data and information quality as an autonomous research area, paradigms and influences deriving from other areas, such as probability theory, statistical data analysis, data mining, knowledge representation, and machine learning are also included. Last not least, the book also highlights very practical solutions, such as methodologies, benchmarks for the most effective techniques, case studies, and examples.

The book has been written primarily for researchers in the fields of databases and information management or in  natural sciences who are interested in investigating properties of data and information that have an impact on the quality of experiments, processes and on real life. The material presented is also sufficiently self-contained for masters or PhD-level courses, and it covers all the fundamentals and topics without the need for other textbooks. Data and information system administrators and practitioners, who deal with systems exposed to data-quality issues and as a result need a systematization of the field and practical methods in the area, will also benefit from the combination of concrete practical approaches with sound theoretical formalisms.



Carlo Batini is full professor of Computer Engineering since 1986, initially at Sapienza - Università di Roma, then since 2002 at University of Milano Bicocca. His research interests include eGoverment, information systems and data base modeling and design, data and information quality, and service science. From 1995 to 2003 he was a member of the board of directors of the Authority for Information Technology in Public Administration, where he headed several large scale projects for the modernization of public administration.

Monica Scannapieco is a researcher at Istat, the Italian National Institute of Statistics since 2006. She earned a University Degree in Computer Engineering with honors and a Ph.D. in Computer Engineering at Sapienza - Università di Roma. She is the author of more than 100 papers mainly on data quality, privacy preservation and data integration, published in leading conferences and journals in databases and information systems. She has been involved in several European research projects on data quality and data integration.

Carlo Batini is full professor of Computer Engineering since 1986, initially at Sapienza – Università di Roma, then since 2002 at University of Milano Bicocca. His research interests include eGoverment, information systems and data base modeling and design, data and information quality, and service science. From 1995 to 2003 he was a member of the board of directors of the Authority for Information Technology in Public Administration, where he headed several large scale projects for the modernization of public administration. Monica Scannapieco is a researcher at Istat, the Italian National Institute of Statistics since 2006. She earned a University Degree in Computer Engineering with honors and a Ph.D. in Computer Engineering at Sapienza - Università di Roma. She is the author of more than 100 papers mainly on data quality, privacy preservation and data integration, published in leading conferences and journals in databases and information systems. She has been involved in several European research projects on data quality and data integration.

Introduction to Information Quality.- Data Quality Dimensions.- Information Quality Dimensions for Maps and Texts.- Data Quality Issues in Linked open data.- Quality Of Images.- Models for Information Quality.- Activities for Information Quality.- Object Identification.- Recent Advances in Object Identification.- Data Quality Issues in Data Integration Systems.- Information Quality in Use.- Methodologies for Information Quality Assessment and Improvement.- Information Quality in Healthcare.- Quality of Web Data and Quality of Big Data: Open Problems.- References.- Index.

Erscheint lt. Verlag 23.3.2016
Reihe/Serie Data-Centric Systems and Applications
Data-Centric Systems and Applications
Zusatzinfo XXVIII, 500 p. 260 illus., 53 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Mathematik / Informatik Informatik
Medizin / Pharmazie
Wirtschaft Betriebswirtschaft / Management Wirtschaftsinformatik
Schlagworte Data Analysis • data integration • data provenance • Data Quality • health care information systems • information integration • Information Quality • Integrity Checking • Object identification • Web data management
ISBN-10 3-319-24106-0 / 3319241060
ISBN-13 978-3-319-24106-7 / 9783319241067
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 14,4 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Datenanalyse für Künstliche Intelligenz

von Jürgen Cleve; Uwe Lämmel

eBook Download (2024)
De Gruyter (Verlag)
74,95
Digitale Geschäftsmodelle auf Basis Künstlicher Intelligenz

von Christian Aichele; Jörg Herrmann

eBook Download (2023)
Springer Fachmedien Wiesbaden (Verlag)
54,99
Wie Sie Daten für die Steuerung von Unternehmen nutzen

von Mischa Seiter

eBook Download (2023)
Vahlen (Verlag)
39,99