Applied Mixed Models in Medicine (eBook)

eBook Download: PDF
2014 | 3. Auflage
536 Seiten
John Wiley & Sons (Verlag)
978-1-118-77823-4 (ISBN)

Lese- und Medienproben

Applied Mixed Models in Medicine - Helen Brown, Robin Prescott
Systemvoraussetzungen
78,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
A fully updated edition of this key text on mixed models, focusing on applications in medical research

The application of mixed models is an increasingly popular way of analysing medical data, particularly in the pharmaceutical industry. A mixed model allows the incorporation of both fixed and random variables within a statistical analysis, enabling efficient inferences and more information to be gained from the data. There have been many recent advances in mixed modelling, particularly regarding the software and applications. This third edition of Brown and Prescott's groundbreaking text provides an update on the latest developments, and includes guidance on the use of current SAS techniques across a wide range of applications.

* Presents an overview of the theory and applications of mixed models in medical research, including the latest developments and new sections on incomplete block designs and the analysis of bilateral data.

* Easily accessible to practitioners in any area where mixed models are used, including medical statisticians and economists.

* Includes numerous examples using real data from medical and health research, and epidemiology, illustrated with SAS code and output.

* Features the new version of SAS, including new graphics for model diagnostics and the procedure PROC MCMC.

* Supported by a website featuring computer code, data sets, and further material.

This third edition will appeal to applied statisticians working in medical research and the pharmaceutical industry, as well as teachers and students of statistics courses in mixed models. The book will also be of great value to a broad range of scientists, particularly those working in the medical and pharmaceutical areas.

Helen Brown, Principal Statistician, NHS Scotland, Edinburgh, UK. Robin Prescott, Medical Statistics Unit, University of Edinburgh Medical School, UK.

Preface to Second Edition xiii

Mixed Model Notation xvii

1 Introduction 1

1.1 The Use of Mixed Models 1

1.2 Introductory Example 3

1.3 A Multi-Centre Hypertension Trial 12

1.4 Repeated Measures Data 18

1.5 More about Mixed Models 22

1.6 Some Useful Definitions 27

2 Normal Mixed Models 33

2.1 Model Definition 33

2.2 Model Fitting Methods 45

2.3 The Bayesian Approach 56

2.4 Practical Application and Interpretation 70

2.5 Example 83

3 Generalised Linear Mixed Models 107

3.1 Generalised Linear Models 108

3.2 Generalised Linear Mixed Models 120

3.3 Practical Application and Interpretation 128

3.4 Example 137

4 Mixed Models for Categorical Data 153

4.1 Ordinal Logistic Regression (Fixed Effects Model) 153

4.2 Mixed Ordinal Logistic Regression 158

4.3 Mixed Models for Unordered Categorical Data 163

4.4 Practical Application and Interpretation 166

4.5 Example 169

5 Multi-Centre Trials and Meta-Analyses 183

5.1 Introduction to Multi-Centre Trials 183

5.2 The Implications of using Different Analysis Models 184

5.3 Example: A Multi-Centre Trial 188

5.4 Practical Application and Interpretation 195

5.5 Sample Size Estimation 197

5.6 Meta-Analysis 203

5.7 Example: Meta-analysis 204

6 Repeated Measures Data 215

6.1 Introduction 215

6.2 Covariance Pattern Models 218

6.3 Example: Covariance Pattern Models for Normal Data 228

6.4 Example: Covariance Pattern Models for Count Data 237

6.5 Random Coefficients Models 245

6.6 Examples of Random Coefficients Models 249

6.7 Sample Size Estimation 267

7 Cross-Over Trials 271

7.1 Introduction 271

7.2 Advantages of Mixed Models in Cross-Over Trials 272

7.3 The AB/BA Cross-Over Trial 272

7.4 Higher Order Complete Block Designs 279

7.5 Incomplete Block Designs 284

7.6 Optimal Designs 287

7.7 Covariance Pattern Models 290

7.8 Analysis of Binary Data 299

7.9 Analysis of Categorical Data 303

7.10 Use of Results from Random Effects Models in Trial Design307

7.11 General Points 308

8 Other Applications of Mixed Models 311

8.1 Trials with Repeated Measurements within Visits 311

8.2 Multi-Centre Trials with Repeated Measurements 330

8.3 Multi-Centre Cross-Over Trials 337

8.4 Hierarchical Multi-Centre Trials and Meta-Analysis 338

8.5 Matched Case-Control Studies 339

8.6 Different Variances for Treatment Groups in a SimpleBetween-Patient Trial 351

8.7 Estimating Variance Components in an Animal Physiology Trial355

8.8 Inter- and Intra-Observer Variation in Foetal ScanMeasurements 361

8.9 Components of Variation and Mean Estimates in a CardiologyExperiment 363

8.10 Cluster Sample Surveys 365

8.11 Small Area Mortality Estimates 367

8.12 Estimating Surgeon Performance 371

8.13 Event History Analysis 372

8.14 A Laboratory Study Using a Within-Subject FactorialDesign 375

8.15 Bioequivalence Studies with Replicate Cross-Over Designs378

8.16 Cluster Randomised Trials 392

8.17 Analysis of Bilateral Data xxx



8.18 Incomplete Block Designs xxx

9 Software for Fitting Mixed Models 401

9.1 Packages for Fitting Mixed Models 401

9.2 PROC MIXED 403

9.3 Using SAS to Fit Mixed Models to Non-Normal Data 423

9.4 PROC MCMC xxx

Glossary 431

References 435

Index 441

Erscheint lt. Verlag 12.12.2014
Reihe/Serie Statistics in Practice
Statistics in Practice
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Studium Querschnittsbereiche Epidemiologie / Med. Biometrie
Technik
Schlagworte Biostatistics • Biostatistik • Clinical & Experimental Medical Research • Klinische u. experimentelle medizinische Forschung • Medical Science • Medizin • Probability & Mathematical Statistics • Statistics • Statistik • Wahrscheinlichkeitsrechnung u. mathematische Statistik
ISBN-10 1-118-77823-5 / 1118778235
ISBN-13 978-1-118-77823-4 / 9781118778234
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 7,4 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich