Algorithmic Learning Theory

19th International Conference, ALT 2008, Budapest, Hungary, October 13-16, 2008, Proceedings
Buch | Softcover
XIII, 467 Seiten
2008 | 2008
Springer Berlin (Verlag)
978-3-540-87986-2 (ISBN)

Lese- und Medienproben

Algorithmic Learning Theory -
53,49 inkl. MwSt
This volume contains papers presented at the 19th International Conference on Algorithmic Learning Theory (ALT 2008), which was held in Budapest, Hungary during October 13-16, 2008. The conference was co-located with the 11th - ternational Conference on Discovery Science (DS 2008). The technical program of ALT 2008 contained 31 papers selected from 46 submissions, and 5 invited talks. The invited talks were presented in joint sessions of both conferences. ALT 2008 was the 19th in the ALT conference series, established in Japan in 1990. The series Analogical and Inductive Inference is a predecessor of this series: it was held in 1986, 1989 and 1992, co-located with ALT in 1994, and s- sequently merged with ALT. ALT maintains its strong connections to Japan, but has also been held in other countries, such as Australia, Germany, Italy, Sin- pore, Spain and the USA. The ALT conference series is supervised by its Steering Committee: Naoki Abe (IBM T. J.

Yoav Freund is Professor of Computer Science at the University of California, San Diego.

Invited Papers.- On Iterative Algorithms with an Information Geometry Background.- Visual Analytics: Combining Automated Discovery with Interactive Visualizations.- Some Mathematics behind Graph Property Testing.- Finding Total and Partial Orders from Data for Seriation.- Computational Models of Neural Representations in the Human Brain.- Regular Contributions.- Generalization Bounds for Some Ordinal Regression Algorithms.- Approximation of the Optimal ROC Curve and a Tree-Based Ranking Algorithm.- Sample Selection Bias Correction Theory.- Exploiting Cluster-Structure to Predict the Labeling of a Graph.- A Uniform Lower Error Bound for Half-Space Learning.- Generalization Bounds for K-Dimensional Coding Schemes in Hilbert Spaces.- Learning and Generalization with the Information Bottleneck.- Growth Optimal Investment with Transaction Costs.- Online Regret Bounds for Markov Decision Processes with Deterministic Transitions.- On-Line Probability, Complexity and Randomness.- Prequential Randomness.- Some Sufficient Conditions on an Arbitrary Class of Stochastic Processes for the Existence of a Predictor.- Nonparametric Independence Tests: Space Partitioning and Kernel Approaches.- Supermartingales in Prediction with Expert Advice.- Aggregating Algorithm for a Space of Analytic Functions.- Smooth Boosting for Margin-Based Ranking.- Learning with Continuous Experts Using Drifting Games.- Entropy Regularized LPBoost.- Optimally Learning Social Networks with Activations and Suppressions.- Active Learning in Multi-armed Bandits.- Query Learning and Certificates in Lattices.- Clustering with Interactive Feedback.- Active Learning of Group-Structured Environments.- Finding the Rare Cube.- Iterative Learning of Simple External Contextual Languages.- Topological Properties of Concept Spaces.- Dynamically Delayed Postdictive Completeness and Consistency in Learning.- Dynamic Modeling in Inductive Inference.- Optimal Language Learning.- Numberings Optimal for Learning.- Learning with Temporary Memory.- Erratum: Constructing Multiclass Learners from Binary Learners: A Simple Black-Box Analysis of the Generalization Errors.

Erscheint lt. Verlag 29.9.2008
Reihe/Serie Lecture Notes in Artificial Intelligence
Lecture Notes in Computer Science
Zusatzinfo XIII, 467 p.
Verlagsort Berlin
Sprache englisch
Maße 155 x 235 mm
Gewicht 735 g
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Schlagworte Clustering • comlexity • concept spaces • half-space learning • Hardcover, Softcover / Informatik, EDV/Informatik • HC/Informatik, EDV/Informatik • Language Learning • learning • machine learning • Markov process • neural representation • visual datamining • Visualization
ISBN-10 3-540-87986-2 / 3540879862
ISBN-13 978-3-540-87986-2 / 9783540879862
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Datenanalyse für Künstliche Intelligenz

von Jürgen Cleve; Uwe Lämmel

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
74,95
Auswertung von Daten mit pandas, NumPy und IPython

von Wes McKinney

Buch | Softcover (2023)
O'Reilly (Verlag)
44,90