Algorithmic Learning Theory
Springer Berlin (Verlag)
978-3-540-87986-2 (ISBN)
Yoav Freund is Professor of Computer Science at the University of California, San Diego.
Invited Papers.- On Iterative Algorithms with an Information Geometry Background.- Visual Analytics: Combining Automated Discovery with Interactive Visualizations.- Some Mathematics behind Graph Property Testing.- Finding Total and Partial Orders from Data for Seriation.- Computational Models of Neural Representations in the Human Brain.- Regular Contributions.- Generalization Bounds for Some Ordinal Regression Algorithms.- Approximation of the Optimal ROC Curve and a Tree-Based Ranking Algorithm.- Sample Selection Bias Correction Theory.- Exploiting Cluster-Structure to Predict the Labeling of a Graph.- A Uniform Lower Error Bound for Half-Space Learning.- Generalization Bounds for K-Dimensional Coding Schemes in Hilbert Spaces.- Learning and Generalization with the Information Bottleneck.- Growth Optimal Investment with Transaction Costs.- Online Regret Bounds for Markov Decision Processes with Deterministic Transitions.- On-Line Probability, Complexity and Randomness.- Prequential Randomness.- Some Sufficient Conditions on an Arbitrary Class of Stochastic Processes for the Existence of a Predictor.- Nonparametric Independence Tests: Space Partitioning and Kernel Approaches.- Supermartingales in Prediction with Expert Advice.- Aggregating Algorithm for a Space of Analytic Functions.- Smooth Boosting for Margin-Based Ranking.- Learning with Continuous Experts Using Drifting Games.- Entropy Regularized LPBoost.- Optimally Learning Social Networks with Activations and Suppressions.- Active Learning in Multi-armed Bandits.- Query Learning and Certificates in Lattices.- Clustering with Interactive Feedback.- Active Learning of Group-Structured Environments.- Finding the Rare Cube.- Iterative Learning of Simple External Contextual Languages.- Topological Properties of Concept Spaces.- Dynamically Delayed Postdictive Completeness and Consistency in Learning.- Dynamic Modeling in Inductive Inference.- Optimal Language Learning.- Numberings Optimal for Learning.- Learning with Temporary Memory.- Erratum: Constructing Multiclass Learners from Binary Learners: A Simple Black-Box Analysis of the Generalization Errors.
Erscheint lt. Verlag | 29.9.2008 |
---|---|
Reihe/Serie | Lecture Notes in Artificial Intelligence | Lecture Notes in Computer Science |
Zusatzinfo | XIII, 467 p. |
Verlagsort | Berlin |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 735 g |
Themenwelt | Informatik ► Datenbanken ► Data Warehouse / Data Mining |
Schlagworte | Clustering • comlexity • concept spaces • half-space learning • Hardcover, Softcover / Informatik, EDV/Informatik • HC/Informatik, EDV/Informatik • Language Learning • learning • machine learning • Markov process • neural representation • visual datamining • Visualization |
ISBN-10 | 3-540-87986-2 / 3540879862 |
ISBN-13 | 978-3-540-87986-2 / 9783540879862 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich