Catalan's Conjecture

(Autor)

Buch | Softcover
124 Seiten
2008
Springer London Ltd (Verlag)
978-1-84800-184-8 (ISBN)

Lese- und Medienproben

Catalan's Conjecture - René Schoof
64,19 inkl. MwSt
it is hoped that this application will motivate the interested reader to study the theory further.Beautifully clear and concise, this book will appeal not only to specialists in number theory but to anyone interested in seeing the application of the ideas of algebraic number theory to a famous mathematical problem.
Eugène Charles Catalan made his famous conjecture – that 8 and 9 are the only two consecutive perfect powers of natural numbers – in 1844 in a letter to the editor of Crelle’s mathematical journal. One hundred and fifty-eight years later, Preda Mihailescu proved it.


Catalan’s Conjecture presents this spectacular result in a way that is accessible to the advanced undergraduate. The author dissects both Mihailescu’s proof and the earlier work it made use of, taking great care to select streamlined and transparent versions of the arguments and to keep the text self-contained. Only in the proof of Thaine’s theorem is a little class field theory used; it is hoped that this application will motivate the interested reader to study the theory further.


Beautifully clear and concise, this book will appeal not only to specialists in number theory but to anyone interested in seeing the application of the ideas of algebraic number theory to a famous mathematical problem.

The Case “q = 2”.- The Case “p = 2”.- The Nontrivial Solution.- Runge’s Method.- Cassels’ theorem.- An Obstruction Group.- Small p or q.- The Stickelberger Ideal.- The Double Wieferich Criterion.- The Minus Argument.- The Plus Argument I.- Semisimple Group Rings.- The Plus Argument II.- The Density Theorem.- Thaine’s Theorem.

Erscheint lt. Verlag 2.12.2008
Reihe/Serie Universitext
Zusatzinfo 10 Illustrations, black and white; IX, 124 p. 10 illus.
Verlagsort England
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Mathematik Algebra
Mathematik / Informatik Mathematik Arithmetik / Zahlentheorie
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
ISBN-10 1-84800-184-3 / 1848001843
ISBN-13 978-1-84800-184-8 / 9781848001848
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich